Spaces:
Sleeping
Sleeping
import streamlit as st | |
import whisper | |
# Load the Whisper model | |
def load_model(): | |
return whisper.load_model("turbo") | |
model = load_model() | |
# Streamlit app | |
st.title("Audio Transcription App") | |
st.header("Using Whisper for Audio Transcription") | |
# File uploader | |
uploaded_file = st.file_uploader("Upload an audio file (e.g., MP3, WAV, etc.)", type=["mp3", "wav", "m4a"]) | |
if uploaded_file is not None: | |
st.audio(uploaded_file, format="audio/mp3", start_time=0) | |
# Transcribe button | |
if st.button("Transcribe Audio"): | |
with st.spinner("Transcribing..."): | |
# Save the uploaded file to a temporary location | |
with open("temp_audio_file.mp3", "wb") as temp_file: | |
temp_file.write(uploaded_file.read()) | |
# Perform transcription | |
result = model.transcribe("temp_audio_file.mp3") | |
transcription_text = result["text"] | |
st.success("Transcription Completed!") | |
st.subheader("Transcription:") | |
st.text_area("Here is the transcription:", transcription_text, height=300) | |
else: | |
st.info("Please upload an audio file to start the transcription.") | |