dev_NLP / app.py
ahmadouna's picture
update app.py
dee15f4
raw
history blame
1.5 kB
import streamlit as st
from transformers import pipeline
from textblob import TextBlob
""""
pipe = pipeline('sentiment-analysis')
st.title("Analyse de sentiment")
#Textbox for text user is entering
text = st.text_input('Entrer votre texte') #text is stored in this variable
out = pipe(text)
st.write("Sentiment du text: ")
st.write(out)
"""
import transformers
import torch
model_name = "OpenLLM-France/Claire-7B-0.1"
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
device_map="auto",
torch_dtype=torch.bfloat16,
load_in_4bit=True # For efficient inference, if supported by the GPU card
)
pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer)
generation_kwargs = dict(
num_return_sequences=1, # Number of variants to generate.
return_full_text= False, # Do not include the prompt in the generated text.
max_new_tokens=200, # Maximum length for the output text.
do_sample=True, top_k=10, temperature=1.0, # Sampling parameters.
pad_token_id=tokenizer.eos_token_id, # Just to avoid a harmless warning.
)
prompt = """\
- Bonjour Dominique, qu'allez-vous nous cuisiner aujourd'hui ?
- Bonjour Camille,\
"""
completions = pipeline(prompt, **generation_kwargs)
for completion in completions:
print(prompt + " […]" + completion['generated_text'])