Spaces:
Sleeping
Sleeping
import torch | |
import streamlit as st | |
from transformers import pipeline | |
st.set_page_config( | |
page_title="Fill Mask", | |
page_icon="π") | |
st.write("# Fill Mask") | |
unmasker = pipeline('fill-mask', model='bert-base-uncased') | |
st.write("Enter a sentence with a masked word using `[MASK]`.") | |
user_input = st.text_input("Input your sentence:", "The capital of France is [MASK].") | |
num_responses = st.slider("Select the number of predictions:", min_value=1, max_value=20, value=5) | |
if st.button("Generate Predictions"): | |
if "[MASK]" not in user_input: | |
st.error("Please include '[MASK]' in your input sentence.") | |
else: | |
try: | |
st.write("### Predictions:") | |
predictions = unmasker(user_input, top_k=num_responses) | |
for i, prediction in enumerate(predictions): | |
token = prediction['token_str'] | |
score = prediction['score'] | |
user_input_before,user_input_after = user_input.split("[MASK]") | |
user_input_with_token = user_input_before + "`" + token + "`"+ user_input_after | |
st.write(user_input_with_token) | |
except Exception as e: | |
st.error(f"An error occurred: {e}") |