ahmed-7124 commited on
Commit
adce4aa
·
verified ·
1 Parent(s): b04ec71

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -14,7 +14,7 @@ image_model = timm.create_model('resnet50', pretrained=True)
14
  image_model.eval()
15
 
16
  # Load saved TensorFlow eye disease detection model
17
- eye_model = tf.keras.models.load_model('model.h5')
18
 
19
  # Patient database
20
  patients_db = []
@@ -214,7 +214,7 @@ def extract_pdf_report(pdf):
214
  text += page.extract_text()
215
  return text
216
 
217
- def predict_eye_disease(input_image):
218
  input_image = tf.image.resize(input_image, [224, 224]) / 255.0
219
  input_image = tf.expand_dims(input_image, 0)
220
  predictions = eye_model.predict(input_image)
@@ -223,7 +223,7 @@ def predict_eye_disease(input_image):
223
  if confidence_scores['Normal'] > 50:
224
  return f"Congrats! No disease detected. Confidence: {confidence_scores['Normal']}%"
225
  return "\n".join([f"{label}: {confidence}%" for label, confidence in confidence_scores.items()])
226
-
227
  def doctor_space(patient_id):
228
  for patient in patients_db:
229
  if patient["ID"] == patient_id:
@@ -287,12 +287,12 @@ report_analysis_interface = gr.Interface(
287
  outputs="text",
288
  )
289
 
290
- eye_disease_interface = gr.Interface(
291
  fn=predict_eye_disease,
292
  inputs=gr.Image(label="Upload an Eye Image", type="numpy"),
293
  outputs="text",
294
  )
295
-
296
  doctor_space_interface = gr.Interface(
297
  fn=doctor_space,
298
  inputs=gr.Number(label="Patient ID"),
@@ -333,9 +333,9 @@ with gr.Blocks() as app:
333
  with gr.Tab("Extract PDF Report"):
334
  pdf_extraction_interface.render()
335
 
336
- with gr.Tab("Ophthalmologist Space"):
337
  eye_disease_interface.render()
338
-
339
  with gr.Tab("Doctor Space"):
340
  doctor_space_interface.render()
341
 
 
14
  image_model.eval()
15
 
16
  # Load saved TensorFlow eye disease detection model
17
+ #eye_model = tf.keras.models.load_model('model.h5')
18
 
19
  # Patient database
20
  patients_db = []
 
214
  text += page.extract_text()
215
  return text
216
 
217
+ '''def predict_eye_disease(input_image):
218
  input_image = tf.image.resize(input_image, [224, 224]) / 255.0
219
  input_image = tf.expand_dims(input_image, 0)
220
  predictions = eye_model.predict(input_image)
 
223
  if confidence_scores['Normal'] > 50:
224
  return f"Congrats! No disease detected. Confidence: {confidence_scores['Normal']}%"
225
  return "\n".join([f"{label}: {confidence}%" for label, confidence in confidence_scores.items()])
226
+ '''
227
  def doctor_space(patient_id):
228
  for patient in patients_db:
229
  if patient["ID"] == patient_id:
 
287
  outputs="text",
288
  )
289
 
290
+ '''eye_disease_interface = gr.Interface(
291
  fn=predict_eye_disease,
292
  inputs=gr.Image(label="Upload an Eye Image", type="numpy"),
293
  outputs="text",
294
  )
295
+ '''
296
  doctor_space_interface = gr.Interface(
297
  fn=doctor_space,
298
  inputs=gr.Number(label="Patient ID"),
 
333
  with gr.Tab("Extract PDF Report"):
334
  pdf_extraction_interface.render()
335
 
336
+ ''' with gr.Tab("Ophthalmologist Space"):
337
  eye_disease_interface.render()
338
+ '''
339
  with gr.Tab("Doctor Space"):
340
  doctor_space_interface.render()
341