import gradio as gr import tensorflow as tf import pdfplumber from transformers import pipeline import timm import torch import pandas as pd # Load pre-trained zero-shot model for text classification classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") # Pre-trained ResNet50 model for X-ray or image analysis image_model = timm.create_model('resnet50', pretrained=True) image_model.eval() # Load saved TensorFlow eye disease detection model #eye_model = tf.keras.models.load_model('model.h5') # Patient database patients_db = [] # Disease details for medical report analyzer disease_details = { "anemia": { "medication": ( "Iron supplements (e.g., ferrous sulfate), " "Vitamin B12 injections (for pernicious anemia), " "Folic acid supplements." ), "precaution": ( "Consume iron-rich foods like spinach, red meat, and lentils. " "Pair iron-rich foods with vitamin C to enhance absorption. " "Avoid tea or coffee with meals as they inhibit iron absorption." ), "doctor": "Hematologist", }, "viral infection": { "medication": ( "Antiviral drugs (e.g., oseltamivir for flu, acyclovir for herpes). " "Over-the-counter medications for symptom relief, such as ibuprofen for fever and body aches." ), "precaution": ( "Stay hydrated by drinking plenty of fluids. " "Isolate to prevent spreading the infection. " "Rest adequately to support recovery. Maintain proper hygiene." ), "doctor": "Infectious Disease Specialist", }, "liver disease": { "medication": ( "Hepatoprotective drugs (e.g., ursodeoxycholic acid, silymarin). " "Antiviral therapy for viral hepatitis. " "Diuretics for managing fluid retention (e.g., spironolactone)." ), "precaution": ( "Avoid alcohol and hepatotoxic drugs. " "Follow a low-fat diet and avoid processed foods. " "Regularly monitor liver function tests." ), "doctor": "Hepatologist", }, "diabetes": { "medication": ( "Oral hypoglycemics (e.g., metformin). " "Insulin therapy for Type 1 diabetes or advanced Type 2 diabetes. " "GLP-1 receptor agonists (e.g., liraglutide) for improving blood sugar control." ), "precaution": ( "Monitor blood glucose levels daily. " "Follow a low-carb, high-fiber diet. " "Engage in regular physical activity. " "Avoid sugary foods and beverages." ), "doctor": "Endocrinologist", }, "hypertension": { "medication": ( "ACE inhibitors (e.g., lisinopril). " "Beta-blockers (e.g., metoprolol). " "Calcium channel blockers (e.g., amlodipine). " "Diuretics (e.g., hydrochlorothiazide)." ), "precaution": ( "Reduce salt intake to less than 2g per day. " "Engage in at least 150 minutes of moderate exercise weekly. " "Avoid smoking and excessive alcohol consumption. " "Manage stress through relaxation techniques like yoga or meditation." ), "doctor": "Cardiologist", }, "pneumonia": { "medication": ( "Antibiotics (e.g., amoxicillin or azithromycin for bacterial pneumonia). " "Antiviral therapy if caused by viruses like influenza. " "Supplemental oxygen in severe cases." ), "precaution": ( "Get plenty of rest and stay hydrated. " "Use a humidifier to ease breathing. " "Avoid smoking or exposure to pollutants. " "Ensure vaccination against influenza and pneumococcus." ), "doctor": "Pulmonologist", }, "asthma": { "medication": ( "Short-acting bronchodilators (e.g., albuterol) for quick relief. " "Inhaled corticosteroids (e.g., fluticasone) for long-term control. " "Leukotriene receptor antagonists (e.g., montelukast) for reducing inflammation." ), "precaution": ( "Avoid known allergens like pollen, dust, and pet dander. " "Carry a rescue inhaler at all times. " "Practice breathing exercises to strengthen lungs. " "Avoid cold air or strenuous exercise without a warm-up." ), "doctor": "Pulmonologist", }, "kidney disease": { "medication": ( "ACE inhibitors or ARBs (e.g., losartan) for controlling blood pressure. " "Erythropoietin-stimulating agents for anemia management. " "Phosphate binders (e.g., sevelamer) to manage high phosphate levels." ), "precaution": ( "Limit salt, potassium, and phosphorus in the diet. " "Stay hydrated but avoid overhydration. " "Avoid NSAIDs and other nephrotoxic drugs. " "Monitor kidney function and blood pressure regularly." ), "doctor": "Nephrologist", }, "thyroid disorder": { "medication": ( "Levothyroxine for hypothyroidism. " "Antithyroid medications (e.g., methimazole) for hyperthyroidism. " "Beta-blockers for symptomatic relief in hyperthyroidism." ), "precaution": ( "Ensure regular thyroid function tests. " "Avoid foods that interfere with thyroid hormone absorption (e.g., soy, certain vegetables). " "Follow medication schedules precisely without skipping doses." ), "doctor": "Endocrinologist", }, "arthritis": { "medication": ( "Nonsteroidal anti-inflammatory drugs (NSAIDs) for pain relief. " "Disease-modifying antirheumatic drugs (DMARDs) for rheumatoid arthritis. " "Biologics (e.g., adalimumab) in severe cases." ), "precaution": ( "Engage in low-impact exercises like swimming or yoga. " "Use ergonomic furniture to reduce joint strain. " "Maintain a healthy weight to reduce joint stress. " "Apply heat or cold therapy for symptom relief." ), "doctor": "Rheumatologist", }, "depression": { "medication": ( "Selective serotonin reuptake inhibitors (SSRIs, e.g., sertraline). " "Serotonin-norepinephrine reuptake inhibitors (SNRIs, e.g., venlafaxine). " "Tricyclic antidepressants (e.g., amitriptyline) in specific cases." ), "precaution": ( "Engage in regular physical exercise. " "Maintain a routine and avoid isolation. " "Consider therapy (e.g., CBT or psychotherapy). " "Avoid alcohol and recreational drugs." ), "doctor": "Psychiatrist", }, } # Passwords doctor_password = "doctor123" # Functions def register_patient(name, age, gender, password): patient_id = len(patients_db) + 1 patients_db.append({ "ID": patient_id, "Name": name, "Age": age, "Gender": gender, "Password": password, "Diagnosis": "", "Medications": "", "Precautions": "", "Doctor": "" }) return f"āœ… Patient {name} registered successfully. Patient ID: {patient_id}" def analyze_report(patient_id, report_text): candidate_labels = list(disease_details.keys()) result = classifier(report_text, candidate_labels) diagnosis = result['labels'][0] # Update patient's record medication = disease_details[diagnosis]['medication'] precaution = disease_details[diagnosis]['precaution'] doctor = disease_details[diagnosis]['doctor'] for patient in patients_db: if patient['ID'] == patient_id: patient.update(Diagnosis=diagnosis, Medications=medication, Precautions=precaution, Doctor=doctor) return f"šŸ” Diagnosis: {diagnosis}" def extract_pdf_report(pdf): text = "" with pdfplumber.open(pdf.name) as pdf_file: for page in pdf_file.pages: text += page.extract_text() return text '''def predict_eye_disease(input_image): input_image = tf.image.resize(input_image, [224, 224]) / 255.0 input_image = tf.expand_dims(input_image, 0) predictions = eye_model.predict(input_image) labels = ['Cataract', 'Conjunctivitis', 'Glaucoma', 'Normal'] confidence_scores = {labels[i]: round(predictions[0][i] * 100, 2) for i in range(len(labels))} if confidence_scores['Normal'] > 50: return f"Congrats! No disease detected. Confidence: {confidence_scores['Normal']}%" return "\n".join([f"{label}: {confidence}%" for label, confidence in confidence_scores.items()]) ''' def doctor_space(patient_id): for patient in patients_db: if patient["ID"] == patient_id: return f"āš  Precautions: {patient['Precautions']}\nšŸ‘©ā€āš• Recommended Doctor: {patient['Doctor']}" return "āŒ Patient not found. Please check the ID." def pharmacist_space(patient_id): for patient in patients_db: if patient["ID"] == patient_id: return f"šŸ’Š Medications: {patient['Medications']}" return "āŒ Patient not found. Please check the ID." def patient_dashboard(patient_id, password): for patient in patients_db: if patient["ID"] == patient_id and patient["Password"] == password: return (f"šŸ©ŗ Name: {patient['Name']}\n" f"šŸ“‹ Diagnosis: {patient['Diagnosis']}\n" f"šŸ’Š Medications: {patient['Medications']}\n" f"āš  Precautions: {patient['Precautions']}\n" f"šŸ‘©ā€āš• Recommended Doctor: {patient['Doctor']}") return "āŒ Access Denied: Invalid ID or Password." def doctor_dashboard(password): if password != doctor_password: return "āŒ Access Denied: Incorrect Password" if not patients_db: return "No patient records available." details = [] for patient in patients_db: details.append(f"šŸ©ŗ Name: {patient['Name']}\n" f"šŸ“‹ Diagnosis: {patient['Diagnosis']}\n" f"šŸ’Š Medications: {patient['Medications']}\n" f"āš  Precautions: {patient['Precautions']}\n" f"šŸ‘©ā€āš• Recommended Doctor: {patient['Doctor']}") return "\n\n".join(details) # Gradio Interfaces registration_interface = gr.Interface( fn=register_patient, inputs=[ gr.Textbox(label="Patient Name"), gr.Number(label="Age"), gr.Radio(label="Gender", choices=["Male", "Female", "Other"]), gr.Textbox(label="Set Password", type="password"), ], outputs="text", ) pdf_extraction_interface = gr.Interface( fn=extract_pdf_report, inputs=gr.File(label="Upload PDF Report"), outputs="text", ) report_analysis_interface = gr.Interface( fn=analyze_report, inputs=[ gr.Number(label="Patient ID"), gr.Textbox(label="Report Text"), ], outputs="text", ) '''eye_disease_interface = gr.Interface( fn=predict_eye_disease, inputs=gr.Image(label="Upload an Eye Image", type="numpy"), outputs="text", ) ''' doctor_space_interface = gr.Interface( fn=doctor_space, inputs=gr.Number(label="Patient ID"), outputs="text", ) pharmacist_space_interface = gr.Interface( fn=pharmacist_space, inputs=gr.Number(label="Patient ID"), outputs="text", ) patient_dashboard_interface = gr.Interface( fn=patient_dashboard, inputs=[ gr.Number(label="Patient ID"), gr.Textbox(label="Password", type="password"), ], outputs="text", ) doctor_dashboard_interface = gr.Interface( fn=doctor_dashboard, inputs=gr.Textbox(label="Doctor Password", type="password"), outputs="text", ) # Gradio App Layout with gr.Blocks() as app: gr.Markdown("# Medico GPT") with gr.Tab("Patient Registration"): registration_interface.render() with gr.Tab("Analyze Medical Report"): report_analysis_interface.render() with gr.Tab("Extract PDF Report"): pdf_extraction_interface.render() with gr.Tab("Doctor Space"): doctor_space_interface.render() with gr.Tab("Pharmacist Space"): pharmacist_space_interface.render() with gr.Tab("Patient Dashboard"): patient_dashboard_interface.render() with gr.Tab("Doctor Dashboard"): doctor_dashboard_interface.render() app.launch(share=True)