Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
-
# Import necessary libraries
|
2 |
import gradio as gr
|
3 |
import tensorflow as tf
|
4 |
import pdfplumber
|
5 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
import timm
|
|
|
|
|
7 |
|
8 |
# Load pre-trained zero-shot model for text classification
|
9 |
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
@@ -15,6 +16,10 @@ image_model.eval()
|
|
15 |
# Load saved TensorFlow eye disease detection model
|
16 |
eye_model = tf.keras.models.load_model('model.h5')
|
17 |
|
|
|
|
|
|
|
|
|
18 |
# Patient database
|
19 |
patients_db = []
|
20 |
|
@@ -26,57 +31,194 @@ disease_details = {
|
|
26 |
"diabetes": {"medication": "Metformin or insulin", "precaution": "Monitor sugar levels", "doctor": "Endocrinologist"},
|
27 |
}
|
28 |
|
29 |
-
# Doctor consultant models
|
30 |
-
neura_tokenizer = AutoTokenizer.from_pretrained("ahmed-7124/NeuraMedAW")
|
31 |
-
neura_model = AutoModelForCausalLM.from_pretrained("ahmed-7124/NeuraMedAW")
|
32 |
-
lynx_tokenizer = AutoTokenizer.from_pretrained("ahmed-7124/LynxMedAW")
|
33 |
-
lynx_model = AutoModelForCausalLM.from_pretrained("ahmed-7124/LynxMedAW")
|
34 |
-
|
35 |
# Passwords
|
36 |
doctor_password = "doctor123"
|
37 |
|
38 |
-
#
|
39 |
-
def
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
#
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Gradio Interfaces
|
54 |
registration_interface = gr.Interface(
|
55 |
fn=register_patient,
|
56 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
outputs="text",
|
58 |
)
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
patient_dashboard_interface = gr.Interface(fn=patient_dashboard, inputs=[gr.Number(label="Patient ID"), gr.Textbox(label="Password", type="password")], outputs="text")
|
66 |
-
doctor_dashboard_interface = gr.Interface(fn=doctor_dashboard, inputs=gr.Textbox(label="Doctor Password", type="password"), outputs="text")
|
67 |
-
doctor_consultant_interface = gr.Interface(fn=generate_consultation_response, inputs=gr.Textbox(label="Enter Symptoms or Query"), outputs="text")
|
68 |
|
69 |
# Gradio App Layout
|
70 |
with gr.Blocks() as app:
|
71 |
gr.Markdown("# Medico GPT")
|
72 |
-
|
73 |
-
with gr.Tab("
|
74 |
-
|
75 |
-
|
76 |
-
with gr.Tab("
|
77 |
-
|
78 |
-
|
79 |
-
with gr.Tab("
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
app.launch(share=True)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
import pdfplumber
|
4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
5 |
import timm
|
6 |
+
import torch
|
7 |
+
import pandas as pd
|
8 |
|
9 |
# Load pre-trained zero-shot model for text classification
|
10 |
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
|
|
16 |
# Load saved TensorFlow eye disease detection model
|
17 |
eye_model = tf.keras.models.load_model('model.h5')
|
18 |
|
19 |
+
# Load NeuraMedAW model and tokenizer
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("ahmed-7124/NeuraMedAW")
|
21 |
+
model = AutoModelForCausalLM.from_pretrained("ahmed-7124/NeuraMedAW")
|
22 |
+
|
23 |
# Patient database
|
24 |
patients_db = []
|
25 |
|
|
|
31 |
"diabetes": {"medication": "Metformin or insulin", "precaution": "Monitor sugar levels", "doctor": "Endocrinologist"},
|
32 |
}
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Passwords
|
35 |
doctor_password = "doctor123"
|
36 |
|
37 |
+
# Functions
|
38 |
+
def register_patient(name, age, gender, password):
|
39 |
+
patient_id = len(patients_db) + 1
|
40 |
+
patients_db.append({
|
41 |
+
"ID": patient_id,
|
42 |
+
"Name": name,
|
43 |
+
"Age": age,
|
44 |
+
"Gender": gender,
|
45 |
+
"Password": password,
|
46 |
+
"Diagnosis": "",
|
47 |
+
"Medications": "",
|
48 |
+
"Precautions": "",
|
49 |
+
"Doctor": ""
|
50 |
+
})
|
51 |
+
return f"β
Patient {name} registered successfully. Patient ID: {patient_id}"
|
52 |
+
|
53 |
+
def analyze_report(patient_id, report_text):
|
54 |
+
candidate_labels = list(disease_details.keys())
|
55 |
+
result = classifier(report_text, candidate_labels)
|
56 |
+
diagnosis = result['labels'][0]
|
57 |
+
|
58 |
+
# Update patient's record
|
59 |
+
medication = disease_details[diagnosis]['medication']
|
60 |
+
precaution = disease_details[diagnosis]['precaution']
|
61 |
+
doctor = disease_details[diagnosis]['doctor']
|
62 |
+
for patient in patients_db:
|
63 |
+
if patient['ID'] == patient_id:
|
64 |
+
patient.update(Diagnosis=diagnosis, Medications=medication, Precautions=precaution, Doctor=doctor)
|
65 |
+
return f"π Diagnosis: {diagnosis}"
|
66 |
+
|
67 |
+
def extract_pdf_report(pdf):
|
68 |
+
text = ""
|
69 |
+
with pdfplumber.open(pdf.name) as pdf_file:
|
70 |
+
for page in pdf_file.pages:
|
71 |
+
text += page.extract_text()
|
72 |
+
return text
|
73 |
+
|
74 |
+
def predict_eye_disease(input_image):
|
75 |
+
input_image = tf.image.resize(input_image, [224, 224]) / 255.0
|
76 |
+
input_image = tf.expand_dims(input_image, 0)
|
77 |
+
predictions = eye_model.predict(input_image)
|
78 |
+
labels = ['Cataract', 'Conjunctivitis', 'Glaucoma', 'Normal']
|
79 |
+
confidence_scores = {labels[i]: round(predictions[0][i] * 100, 2) for i in range(len(labels))}
|
80 |
+
if confidence_scores['Normal'] > 50:
|
81 |
+
return f"Congrats! No disease detected. Confidence: {confidence_scores['Normal']}%"
|
82 |
+
return "\n".join([f"{label}: {confidence}%" for label, confidence in confidence_scores.items()])
|
83 |
+
|
84 |
+
def doctor_space(patient_id):
|
85 |
+
for patient in patients_db:
|
86 |
+
if patient["ID"] == patient_id:
|
87 |
+
return f"β οΈ Precautions: {patient['Precautions']}\nπ©ββοΈ Recommended Doctor: {patient['Doctor']}"
|
88 |
+
return "β Patient not found. Please check the ID."
|
89 |
+
|
90 |
+
def pharmacist_space(patient_id):
|
91 |
+
for patient in patients_db:
|
92 |
+
if patient["ID"] == patient_id:
|
93 |
+
return f"π Medications: {patient['Medications']}"
|
94 |
+
return "β Patient not found. Please check the ID."
|
95 |
|
96 |
+
def patient_dashboard(patient_id, password):
|
97 |
+
for patient in patients_db:
|
98 |
+
if patient["ID"] == patient_id and patient["Password"] == password:
|
99 |
+
return (f"π©Ί Name: {patient['Name']}\n"
|
100 |
+
f"π Diagnosis: {patient['Diagnosis']}\n"
|
101 |
+
f"π Medications: {patient['Medications']}\n"
|
102 |
+
f"β οΈ Precautions: {patient['Precautions']}\n"
|
103 |
+
f"π©ββοΈ Recommended Doctor: {patient['Doctor']}")
|
104 |
+
return "β Access Denied: Invalid ID or Password."
|
105 |
|
106 |
+
def doctor_dashboard(password):
|
107 |
+
if password != doctor_password:
|
108 |
+
return "β Access Denied: Incorrect Password"
|
109 |
+
if not patients_db:
|
110 |
+
return "No patient records available."
|
111 |
+
details = []
|
112 |
+
for patient in patients_db:
|
113 |
+
details.append(f"π©Ί Name: {patient['Name']}\n"
|
114 |
+
f"π Diagnosis: {patient['Diagnosis']}\n"
|
115 |
+
f"π Medications: {patient['Medications']}\n"
|
116 |
+
f"β οΈ Precautions: {patient['Precautions']}\n"
|
117 |
+
f"π©ββοΈ Recommended Doctor: {patient['Doctor']}")
|
118 |
+
return "\n\n".join(details)
|
119 |
|
120 |
+
def doctor_consultant(patient_query):
|
121 |
+
# Combine both models for a more comprehensive answer
|
122 |
+
inputs = tokenizer(patient_query, return_tensors="pt")
|
123 |
+
output = model.generate(**inputs, max_length=500)
|
124 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
125 |
+
return response
|
126 |
|
127 |
# Gradio Interfaces
|
128 |
registration_interface = gr.Interface(
|
129 |
fn=register_patient,
|
130 |
+
inputs=[
|
131 |
+
gr.Textbox(label="Patient Name"),
|
132 |
+
gr.Number(label="Age"),
|
133 |
+
gr.Radio(label="Gender", choices=["Male", "Female", "Other"]),
|
134 |
+
gr.Textbox(label="Set Password", type="password"),
|
135 |
+
],
|
136 |
+
outputs="text",
|
137 |
+
)
|
138 |
+
|
139 |
+
pdf_extraction_interface = gr.Interface(
|
140 |
+
fn=extract_pdf_report,
|
141 |
+
inputs=gr.File(label="Upload PDF Report"),
|
142 |
+
outputs="text",
|
143 |
+
)
|
144 |
+
|
145 |
+
report_analysis_interface = gr.Interface(
|
146 |
+
fn=analyze_report,
|
147 |
+
inputs=[
|
148 |
+
gr.Number(label="Patient ID"),
|
149 |
+
gr.Textbox(label="Report Text"),
|
150 |
+
],
|
151 |
+
outputs="text",
|
152 |
+
)
|
153 |
+
|
154 |
+
eye_disease_interface = gr.Interface(
|
155 |
+
fn=predict_eye_disease,
|
156 |
+
inputs=gr.Image(label="Upload an Eye Image", type="numpy"),
|
157 |
+
outputs="text",
|
158 |
+
)
|
159 |
+
|
160 |
+
doctor_space_interface = gr.Interface(
|
161 |
+
fn=doctor_space,
|
162 |
+
inputs=gr.Number(label="Patient ID"),
|
163 |
+
outputs="text",
|
164 |
+
)
|
165 |
+
|
166 |
+
pharmacist_space_interface = gr.Interface(
|
167 |
+
fn=pharmacist_space,
|
168 |
+
inputs=gr.Number(label="Patient ID"),
|
169 |
+
outputs="text",
|
170 |
+
)
|
171 |
+
|
172 |
+
patient_dashboard_interface = gr.Interface(
|
173 |
+
fn=patient_dashboard,
|
174 |
+
inputs=[
|
175 |
+
gr.Number(label="Patient ID"),
|
176 |
+
gr.Textbox(label="Password", type="password"),
|
177 |
+
],
|
178 |
+
outputs="text",
|
179 |
+
)
|
180 |
+
|
181 |
+
doctor_dashboard_interface = gr.Interface(
|
182 |
+
fn=doctor_dashboard,
|
183 |
+
inputs=gr.Textbox(label="Doctor Password", type="password"),
|
184 |
outputs="text",
|
185 |
)
|
186 |
|
187 |
+
doctor_consultant_interface = gr.Interface(
|
188 |
+
fn=doctor_consultant,
|
189 |
+
inputs=gr.Textbox(label="Ask the Doctor a Question"),
|
190 |
+
outputs="text",
|
191 |
+
)
|
|
|
|
|
|
|
192 |
|
193 |
# Gradio App Layout
|
194 |
with gr.Blocks() as app:
|
195 |
gr.Markdown("# Medico GPT")
|
196 |
+
|
197 |
+
with gr.Tab("Patient Registration"):
|
198 |
+
registration_interface.render()
|
199 |
+
|
200 |
+
with gr.Tab("Analyze Medical Report"):
|
201 |
+
report_analysis_interface.render()
|
202 |
+
|
203 |
+
with gr.Tab("Extract PDF Report"):
|
204 |
+
pdf_extraction_interface.render()
|
205 |
+
|
206 |
+
with gr.Tab("Ophthalmologist Space"):
|
207 |
+
eye_disease_interface.render()
|
208 |
+
|
209 |
+
with gr.Tab("Doctor Space"):
|
210 |
+
doctor_space_interface.render()
|
211 |
+
|
212 |
+
with gr.Tab("Pharmacist Space"):
|
213 |
+
pharmacist_space_interface.render()
|
214 |
+
|
215 |
+
with gr.Tab("Patient Dashboard"):
|
216 |
+
patient_dashboard_interface.render()
|
217 |
+
|
218 |
+
with gr.Tab("Doctor Dashboard"):
|
219 |
+
doctor_dashboard_interface.render()
|
220 |
+
|
221 |
+
with gr.Tab("Doctor Consultant"):
|
222 |
+
doctor_consultant_interface.render()
|
223 |
|
224 |
app.launch(share=True)
|