Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import tensorflow as tf
|
|
3 |
import pdfplumber
|
4 |
from transformers import pipeline
|
5 |
import timm
|
6 |
-
import torch
|
7 |
|
8 |
# Load pre-trained zero-shot model for text classification
|
9 |
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
@@ -26,9 +25,6 @@ disease_details = {
|
|
26 |
"diabetes": {"medication": "Metformin or insulin", "precaution": "Monitor sugar levels", "doctor": "Endocrinologist"},
|
27 |
}
|
28 |
|
29 |
-
# Password for doctor dashboard
|
30 |
-
doctor_password = "doctor123"
|
31 |
-
|
32 |
# Functions
|
33 |
def register_patient(name, age, gender, password):
|
34 |
patient_id = len(patients_db) + 1
|
@@ -66,45 +62,13 @@ def extract_pdf_report(pdf):
|
|
66 |
text += page.extract_text()
|
67 |
return text
|
68 |
|
69 |
-
def predict_eye_disease(input_image):
|
70 |
-
input_image = tf.image.resize(input_image, [224, 224]) / 255.0
|
71 |
-
input_image = tf.expand_dims(input_image, 0)
|
72 |
-
predictions = eye_model.predict(input_image)
|
73 |
-
labels = ['Cataract', 'Conjunctivitis', 'Glaucoma', 'Normal']
|
74 |
-
confidence_scores = {labels[i]: round(predictions[0][i] * 100, 2) for i in range(len(labels))}
|
75 |
-
if confidence_scores['Normal'] > 50:
|
76 |
-
return f"Congrats! No disease detected. Confidence: {confidence_scores['Normal']}%"
|
77 |
-
return "\n".join([f"{label}: {confidence}%" for label, confidence in confidence_scores.items()])
|
78 |
-
|
79 |
-
def doctor_space(patient_id):
|
80 |
-
for patient in patients_db:
|
81 |
-
if patient["ID"] == patient_id:
|
82 |
-
return f"β οΈ Precautions: {patient['Precautions']}\nπ©ββοΈ Recommended Doctor: {patient['Doctor']}"
|
83 |
-
return "β Patient not found. Please check the ID."
|
84 |
-
|
85 |
-
def pharmacist_space(patient_id):
|
86 |
-
for patient in patients_db:
|
87 |
-
if patient["ID"] == patient_id:
|
88 |
-
return f"π Medications: {patient['Medications']}"
|
89 |
-
return "β Patient not found. Please check the ID."
|
90 |
-
|
91 |
-
def patient_dashboard(patient_id, password):
|
92 |
-
for patient in patients_db:
|
93 |
-
if patient["ID"] == patient_id and patient["Password"] == password:
|
94 |
-
return (f"π©Ί Name: {patient['Name']}\n"
|
95 |
-
f"π Diagnosis: {patient['Diagnosis']}\n"
|
96 |
-
f"π Medications: {patient['Medications']}\n"
|
97 |
-
f"β οΈ Precautions: {patient['Precautions']}\n"
|
98 |
-
f"π©ββοΈ Recommended Doctor: {patient['Doctor']}")
|
99 |
-
return "β Access Denied: Invalid ID or Password."
|
100 |
-
|
101 |
# Gradio App Layout
|
102 |
with gr.Blocks() as app:
|
103 |
gr.Markdown("# Medico GPT")
|
104 |
|
105 |
# Shared state for extracted text
|
106 |
extracted_text_state = gr.State("")
|
107 |
-
|
108 |
with gr.Tab("Patient Registration"):
|
109 |
name = gr.Textbox(label="Patient Name")
|
110 |
age = gr.Number(label="Age")
|
@@ -144,10 +108,9 @@ with gr.Blocks() as app:
|
|
144 |
|
145 |
# Autofill extracted text into Analyze Medical Report tab
|
146 |
extract_button.click(
|
147 |
-
fn=
|
148 |
-
inputs=
|
149 |
-
outputs=
|
150 |
-
_js="(x) => x"
|
151 |
)
|
152 |
|
153 |
app.launch(share=True)
|
|
|
3 |
import pdfplumber
|
4 |
from transformers import pipeline
|
5 |
import timm
|
|
|
6 |
|
7 |
# Load pre-trained zero-shot model for text classification
|
8 |
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
|
|
25 |
"diabetes": {"medication": "Metformin or insulin", "precaution": "Monitor sugar levels", "doctor": "Endocrinologist"},
|
26 |
}
|
27 |
|
|
|
|
|
|
|
28 |
# Functions
|
29 |
def register_patient(name, age, gender, password):
|
30 |
patient_id = len(patients_db) + 1
|
|
|
62 |
text += page.extract_text()
|
63 |
return text
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
# Gradio App Layout
|
66 |
with gr.Blocks() as app:
|
67 |
gr.Markdown("# Medico GPT")
|
68 |
|
69 |
# Shared state for extracted text
|
70 |
extracted_text_state = gr.State("")
|
71 |
+
|
72 |
with gr.Tab("Patient Registration"):
|
73 |
name = gr.Textbox(label="Patient Name")
|
74 |
age = gr.Number(label="Age")
|
|
|
108 |
|
109 |
# Autofill extracted text into Analyze Medical Report tab
|
110 |
extract_button.click(
|
111 |
+
fn=lambda extracted_text: extracted_text,
|
112 |
+
inputs=extracted_text_state,
|
113 |
+
outputs=report_text
|
|
|
114 |
)
|
115 |
|
116 |
app.launch(share=True)
|