ahmed-7124 commited on
Commit
4f6f95c
·
verified ·
1 Parent(s): 00045d2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -6,15 +6,15 @@ import timm
6
  import torch
7
  import pandas as pd
8
 
9
- # Load pre-trained zero-shot model for text classification
10
- classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
11
 
12
- # Pre-trained ResNet50 model for X-ray or image analysis
13
  image_model = timm.create_model('resnet50', pretrained=True)
14
  image_model.eval()
15
 
16
  # Load saved TensorFlow eye disease detection model (TensorFlow Model without Keras)
17
- eye_model = tf.saved_model.load('model')
18
 
19
  # Patient database
20
  patients_db = []
@@ -30,10 +30,9 @@ disease_details = {
30
  # Passwords
31
  doctor_password = "doctor123"
32
 
33
- from transformers import AutoTokenizer, AutoModelForCausalLM
34
-
35
  try:
36
- # Force using the slow tokenizer
37
  tokenizer = AutoTokenizer.from_pretrained("harishussain12/PastelMed", use_fast=False)
38
  except Exception as e:
39
  print(f"Tokenizer error: {e}")
@@ -47,7 +46,8 @@ def consult_doctor(prompt):
47
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
48
  return response
49
 
50
- # Functions
 
51
  def register_patient(name, age, gender, password):
52
  patient_id = len(patients_db) + 1
53
  patients_db.append({
 
6
  import torch
7
  import pandas as pd
8
 
9
+ # Load pre-trained zero-shot model for text classification (using PyTorch for compatibility)
10
+ classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli", framework="pt")
11
 
12
+ # Pre-trained ResNet50 model for X-ray or image analysis using Timm
13
  image_model = timm.create_model('resnet50', pretrained=True)
14
  image_model.eval()
15
 
16
  # Load saved TensorFlow eye disease detection model (TensorFlow Model without Keras)
17
+ eye_model = tf.keras.models.load_model('/content/model.h5')
18
 
19
  # Patient database
20
  patients_db = []
 
30
  # Passwords
31
  doctor_password = "doctor123"
32
 
33
+ # Loading the custom model for consultation with the doctor
 
34
  try:
35
+ # Force using the slow tokenizer for compatibility
36
  tokenizer = AutoTokenizer.from_pretrained("harishussain12/PastelMed", use_fast=False)
37
  except Exception as e:
38
  print(f"Tokenizer error: {e}")
 
46
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
47
  return response
48
 
49
+ # Functions for the app
50
+
51
  def register_patient(name, age, gender, password):
52
  patient_id = len(patients_db) + 1
53
  patients_db.append({