Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,8 +13,8 @@ classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnl
|
|
13 |
image_model = timm.create_model('resnet50', pretrained=True)
|
14 |
image_model.eval()
|
15 |
|
16 |
-
# Load saved TensorFlow eye disease detection model
|
17 |
-
eye_model = tf.
|
18 |
|
19 |
# Patient database
|
20 |
patients_db = []
|
@@ -87,9 +87,9 @@ def extract_pdf_report(pdf):
|
|
87 |
def predict_eye_disease(input_image):
|
88 |
input_image = tf.image.resize(input_image, [224, 224]) / 255.0
|
89 |
input_image = tf.expand_dims(input_image, 0)
|
90 |
-
predictions = eye_model
|
91 |
labels = ['Cataract', 'Conjunctivitis', 'Glaucoma', 'Normal']
|
92 |
-
confidence_scores = {labels[i]: round(predictions[
|
93 |
if confidence_scores['Normal'] > 50:
|
94 |
return f"Congrats! No disease detected. Confidence: {confidence_scores['Normal']}%"
|
95 |
return "\n".join([f"{label}: {confidence}%" for label, confidence in confidence_scores.items()])
|
|
|
13 |
image_model = timm.create_model('resnet50', pretrained=True)
|
14 |
image_model.eval()
|
15 |
|
16 |
+
# Load saved TensorFlow eye disease detection model (TensorFlow Model without Keras)
|
17 |
+
eye_model = tf.saved_model.load('model')
|
18 |
|
19 |
# Patient database
|
20 |
patients_db = []
|
|
|
87 |
def predict_eye_disease(input_image):
|
88 |
input_image = tf.image.resize(input_image, [224, 224]) / 255.0
|
89 |
input_image = tf.expand_dims(input_image, 0)
|
90 |
+
predictions = eye_model(input_image)
|
91 |
labels = ['Cataract', 'Conjunctivitis', 'Glaucoma', 'Normal']
|
92 |
+
confidence_scores = {labels[i]: round(predictions[i] * 100, 2) for i in range(len(labels))}
|
93 |
if confidence_scores['Normal'] > 50:
|
94 |
return f"Congrats! No disease detected. Confidence: {confidence_scores['Normal']}%"
|
95 |
return "\n".join([f"{label}: {confidence}%" for label, confidence in confidence_scores.items()])
|