import gradio as gr import tensorflow as tf import pdfplumber from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM import timm import torch import pandas as pd # Load pre-trained zero-shot model for text classification classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") # Pre-trained ResNet50 model for X-ray or image analysis image_model = timm.create_model('resnet50', pretrained=True) image_model.eval() # Load saved TensorFlow eye disease detection model (TensorFlow Model without Keras) eye_model = tf.saved_model.load('model') # Patient database patients_db = [] # Disease details for medical report analyzer disease_details = { "anemia": {"medication": "Iron supplements", "precaution": "Eat iron-rich foods", "doctor": "Hematologist"}, "viral infection": {"medication": "Antiviral drugs", "precaution": "Stay hydrated", "doctor": "Infectious Disease Specialist"}, "liver disease": {"medication": "Hepatoprotective drugs", "precaution": "Avoid alcohol", "doctor": "Hepatologist"}, "diabetes": {"medication": "Metformin or insulin", "precaution": "Monitor sugar levels", "doctor": "Endocrinologist"}, } # Passwords doctor_password = "doctor123" from transformers import AutoTokenizer, AutoModelForCausalLM try: # Force using the slow tokenizer tokenizer = AutoTokenizer.from_pretrained("harishussain12/PastelMed", use_fast=False) except Exception as e: print(f"Tokenizer error: {e}") tokenizer = AutoTokenizer.from_pretrained("harishussain12/PastelMed", use_fast=False) model = AutoModelForCausalLM.from_pretrained("harishussain12/PastelMed") def consult_doctor(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Functions def register_patient(name, age, gender, password): patient_id = len(patients_db) + 1 patients_db.append({ "ID": patient_id, "Name": name, "Age": age, "Gender": gender, "Password": password, "Diagnosis": "", "Medications": "", "Precautions": "", "Doctor": "" }) return f"āœ… Patient {name} registered successfully. Patient ID: {patient_id}" def analyze_report(patient_id, report_text): candidate_labels = list(disease_details.keys()) result = classifier(report_text, candidate_labels) diagnosis = result['labels'][0] # Update patient's record medication = disease_details[diagnosis]['medication'] precaution = disease_details[diagnosis]['precaution'] doctor = disease_details[diagnosis]['doctor'] for patient in patients_db: if patient['ID'] == patient_id: patient.update(Diagnosis=diagnosis, Medications=medication, Precautions=precaution, Doctor=doctor) return f"šŸ” Diagnosis: {diagnosis}" def extract_pdf_report(pdf): text = "" with pdfplumber.open(pdf.name) as pdf_file: for page in pdf_file.pages: text += page.extract_text() return text def predict_eye_disease(input_image): input_image = tf.image.resize(input_image, [224, 224]) / 255.0 input_image = tf.expand_dims(input_image, 0) predictions = eye_model(input_image) labels = ['Cataract', 'Conjunctivitis', 'Glaucoma', 'Normal'] confidence_scores = {labels[i]: round(predictions[i] * 100, 2) for i in range(len(labels))} if confidence_scores['Normal'] > 50: return f"Congrats! No disease detected. Confidence: {confidence_scores['Normal']}%" return "\n".join([f"{label}: {confidence}%" for label, confidence in confidence_scores.items()]) def doctor_space(patient_id): for patient in patients_db: if patient["ID"] == patient_id: return f"āš  Precautions: {patient['Precautions']}\nšŸ‘©ā€āš• Recommended Doctor: {patient['Doctor']}" return "āŒ Patient not found. Please check the ID." def pharmacist_space(patient_id): for patient in patients_db: if patient["ID"] == patient_id: return f"šŸ’Š Medications: {patient['Medications']}" return "āŒ Patient not found. Please check the ID." def patient_dashboard(patient_id, password): for patient in patients_db: if patient["ID"] == patient_id and patient["Password"] == password: return (f"šŸ©ŗ Name: {patient['Name']}\n" f"šŸ“‹ Diagnosis: {patient['Diagnosis']}\n" f"šŸ’Š Medications: {patient['Medications']}\n" f"āš  Precautions: {patient['Precautions']}\n" f"šŸ‘©ā€āš• Recommended Doctor: {patient['Doctor']}") return "āŒ Access Denied: Invalid ID or Password." def doctor_dashboard(password): if password != doctor_password: return "āŒ Access Denied: Incorrect Password" if not patients_db: return "No patient records available." details = [] for patient in patients_db: details.append(f"šŸ©ŗ Name: {patient['Name']}\n" f"šŸ“‹ Diagnosis: {patient['Diagnosis']}\n" f"šŸ’Š Medications: {patient['Medications']}\n" f"āš  Precautions: {patient['Precautions']}\n" f"šŸ‘©ā€āš• Recommended Doctor: {patient['Doctor']}") return "\n\n".join(details) # Gradio Interfaces registration_interface = gr.Interface( fn=register_patient, inputs=[ gr.Textbox(label="Patient Name"), gr.Number(label="Age"), gr.Radio(label="Gender", choices=["Male", "Female", "Other"]), gr.Textbox(label="Set Password", type="password"), ], outputs="text", ) pdf_extraction_interface = gr.Interface( fn=extract_pdf_report, inputs=gr.File(label="Upload PDF Report"), outputs="text", ) report_analysis_interface = gr.Interface( fn=analyze_report, inputs=[ gr.Number(label="Patient ID"), gr.Textbox(label="Report Text"), ], outputs="text", ) eye_disease_interface = gr.Interface( fn=predict_eye_disease, inputs=gr.Image(label="Upload an Eye Image", type="numpy"), outputs="text", ) doctor_space_interface = gr.Interface( fn=doctor_space, inputs=gr.Number(label="Patient ID"), outputs="text", ) pharmacist_space_interface = gr.Interface( fn=pharmacist_space, inputs=gr.Number(label="Patient ID"), outputs="text", ) patient_dashboard_interface = gr.Interface( fn=patient_dashboard, inputs=[ gr.Number(label="Patient ID"), gr.Textbox(label="Password", type="password"), ], outputs="text", ) doctor_dashboard_interface = gr.Interface( fn=doctor_dashboard, inputs=gr.Textbox(label="Doctor Password", type="password"), outputs="text", ) consult_doctor_interface = gr.Interface( fn=consult_doctor, inputs=gr.Textbox(label="Enter Your Query for the Doctor"), outputs="text", ) # Gradio App Layout with gr.Blocks() as app: gr.Markdown("# Medico GPT") with gr.Tab("Patient Registration"): registration_interface.render() with gr.Tab("Analyze Medical Report"): report_analysis_interface.render() with gr.Tab("Extract PDF Report"): pdf_extraction_interface.render() with gr.Tab("Ophthalmologist Space"): eye_disease_interface.render() with gr.Tab("Doctor Space"): doctor_space_interface.render() with gr.Tab("Pharmacist Space"): pharmacist_space_interface.render() with gr.Tab("Patient Dashboard"): patient_dashboard_interface.render() with gr.Tab("Doctor Dashboard"): doctor_dashboard_interface.render() with gr.Tab("Doctor Consult"): consult_doctor_interface.render() # Launch the app app.launch(share=True)