Spaces:
Sleeping
Sleeping
File size: 1,066 Bytes
cc70292 eeedcbc cc70292 eeedcbc cc70292 1363fd6 cc70292 1363fd6 cc70292 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Install SentencePiece
import sentencepiece
import torch
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("ahmed792002/Finetuning_T5_HealthCare_Chatbot", use_fast=True)
model = AutoModelForSeq2SeqLM.from_pretrained("ahmed792002/Finetuning_T5_HealthCare_Chatbot")
# Define the chatbot function
def chatbot(input_text):
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
outputs = model.generate(inputs["input_ids"], max_length=100, num_beams=4, early_stopping=True)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Set up the Gradio interface
interface = gr.Interface(
fn=chatbot,
inputs=gr.inputs.Textbox(label="Enter your query"),
outputs=gr.outputs.Textbox(label="Response"),
title="Healthcare Chatbot",
description="Ask healthcare-related questions, and get responses from the fine-tuned T5 model."
)
# Launch the app
if __name__ == "__main__":
interface.launch()
|