Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,18 +4,22 @@ import re
|
|
4 |
import torch
|
5 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
6 |
|
|
|
7 |
tokenizer = T5Tokenizer.from_pretrained("ahmed792002/Finetuning_T5_HealthCare_Chatbot")
|
8 |
model = T5ForConditionalGeneration.from_pretrained("ahmed792002/Finetuning_T5_HealthCare_Chatbot")
|
9 |
|
|
|
10 |
def clean_text(text):
|
11 |
text = re.sub(r'\r\n', ' ', text) # Remove carriage returns and line breaks
|
12 |
text = re.sub(r'\s+', ' ', text) # Remove extra spaces
|
13 |
text = re.sub(r'<.*?>', '', text) # Remove any XML tags
|
14 |
text = text.strip().lower() # Strip and convert to lower case
|
15 |
return text
|
|
|
|
|
16 |
def chatbot(query):
|
17 |
query = clean_text(query)
|
18 |
-
input_ids = tokenizer(query,return_tensors="pt",max_length=256,truncation=True)
|
19 |
inputs = {key: value.to(device) for key, value in input_ids.items()}
|
20 |
outputs = model.generate(
|
21 |
input_ids["input_ids"],
|
@@ -24,7 +28,7 @@ def chatbot(query):
|
|
24 |
early_stopping=True
|
25 |
)
|
26 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
27 |
-
|
28 |
"""
|
29 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
30 |
"""
|
@@ -35,6 +39,5 @@ demo = gr.ChatInterface(
|
|
35 |
],
|
36 |
)
|
37 |
|
38 |
-
|
39 |
if __name__ == "__main__":
|
40 |
demo.launch()
|
|
|
4 |
import torch
|
5 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
6 |
|
7 |
+
# Load pre-trained model and tokenizer
|
8 |
tokenizer = T5Tokenizer.from_pretrained("ahmed792002/Finetuning_T5_HealthCare_Chatbot")
|
9 |
model = T5ForConditionalGeneration.from_pretrained("ahmed792002/Finetuning_T5_HealthCare_Chatbot")
|
10 |
|
11 |
+
# Function to clean input text
|
12 |
def clean_text(text):
|
13 |
text = re.sub(r'\r\n', ' ', text) # Remove carriage returns and line breaks
|
14 |
text = re.sub(r'\s+', ' ', text) # Remove extra spaces
|
15 |
text = re.sub(r'<.*?>', '', text) # Remove any XML tags
|
16 |
text = text.strip().lower() # Strip and convert to lower case
|
17 |
return text
|
18 |
+
|
19 |
+
# Chatbot function
|
20 |
def chatbot(query):
|
21 |
query = clean_text(query)
|
22 |
+
input_ids = tokenizer(query, return_tensors="pt", max_length=256, truncation=True)
|
23 |
inputs = {key: value.to(device) for key, value in input_ids.items()}
|
24 |
outputs = model.generate(
|
25 |
input_ids["input_ids"],
|
|
|
28 |
early_stopping=True
|
29 |
)
|
30 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
31 |
+
|
32 |
"""
|
33 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
34 |
"""
|
|
|
39 |
],
|
40 |
)
|
41 |
|
|
|
42 |
if __name__ == "__main__":
|
43 |
demo.launch()
|