Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,23 +5,15 @@ import torch
|
|
5 |
# Load pre-trained model and tokenizer
|
6 |
tokenizer = AutoTokenizer.from_pretrained("ahmed792002/alzheimers_memory_support_ai")
|
7 |
model = AutoModelForCausalLM.from_pretrained("ahmed792002/alzheimers_memory_support_ai")
|
8 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
-
model.to(device) # Send the model to the correct device
|
10 |
-
|
11 |
-
# Function to clean input text
|
12 |
-
def clean_text(text):
|
13 |
-
return text.strip() # Simply remove leading/trailing spaces
|
14 |
|
15 |
# Chatbot function
|
16 |
def chatbot(query, history, system_message, max_length, temperature, top_k, top_p):
|
17 |
"""
|
18 |
Processes a user query through the specified model to generate a response.
|
19 |
"""
|
20 |
-
# Clean the input query
|
21 |
-
query = clean_text(query)
|
22 |
|
23 |
# Tokenize input query
|
24 |
-
input_ids = tokenizer.encode(query, return_tensors="pt")
|
25 |
|
26 |
# Generate text using the model
|
27 |
final_outputs = model.generate(
|
@@ -48,8 +40,6 @@ demo = gr.ChatInterface(
|
|
48 |
gr.Slider(1, 100, value=50, step=1, label="Top-K"), # Slider for top_k
|
49 |
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-P"), # Slider for top_p
|
50 |
],
|
51 |
-
title="Custom Alzheimer's Memory Support AI",
|
52 |
-
description="This chatbot uses the fine-tuned model 'ahmed792002/alzheimers_memory_support_ai'. Customize settings like max length, temperature, top-k, and top-p for better results.",
|
53 |
)
|
54 |
|
55 |
if __name__ == "__main__":
|
|
|
5 |
# Load pre-trained model and tokenizer
|
6 |
tokenizer = AutoTokenizer.from_pretrained("ahmed792002/alzheimers_memory_support_ai")
|
7 |
model = AutoModelForCausalLM.from_pretrained("ahmed792002/alzheimers_memory_support_ai")
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Chatbot function
|
10 |
def chatbot(query, history, system_message, max_length, temperature, top_k, top_p):
|
11 |
"""
|
12 |
Processes a user query through the specified model to generate a response.
|
13 |
"""
|
|
|
|
|
14 |
|
15 |
# Tokenize input query
|
16 |
+
input_ids = tokenizer.encode(query, return_tensors="pt")=
|
17 |
|
18 |
# Generate text using the model
|
19 |
final_outputs = model.generate(
|
|
|
40 |
gr.Slider(1, 100, value=50, step=1, label="Top-K"), # Slider for top_k
|
41 |
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-P"), # Slider for top_p
|
42 |
],
|
|
|
|
|
43 |
)
|
44 |
|
45 |
if __name__ == "__main__":
|