Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -11,92 +11,79 @@ model_ids = [
|
|
11 |
"00002_DCGAN_MMG_MASS_ROI",
|
12 |
"00003_CYCLEGAN_MMG_DENSITY_FULL",
|
13 |
"00004_PIX2PIX_MMG_MASSES_W_MASKS",
|
14 |
-
"00019_PGGAN_CHEST_XRAY"
|
15 |
]
|
16 |
|
17 |
def main():
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
# Add dropdown widget for model selection to the sidebar
|
21 |
-
model_id = st.sidebar.selectbox("Select Model ID", model_ids)
|
22 |
-
|
23 |
-
# Add number image selector to the sidebar
|
24 |
-
num_images = st.sidebar.number_input(
|
25 |
-
"Number of Images", min_value=1, max_value=7, value=1, step=1
|
26 |
-
)
|
27 |
-
|
28 |
-
# Add generate button to the sidebar
|
29 |
-
if st.sidebar.button("Generate Images"):
|
30 |
-
generate_images(num_images, model_id)
|
31 |
-
|
32 |
-
# Task 5.4.9: Copy the torch_images function from this notebook to app.py.
|
33 |
def torch_images(num_images, model_id):
|
34 |
generators = Generators()
|
35 |
dataloader = generators.get_as_torch_dataloader(
|
36 |
model_id=model_id,
|
37 |
install_dependencies=True,
|
38 |
num_samples=num_images,
|
39 |
-
|
|
|
40 |
)
|
41 |
|
42 |
images = []
|
43 |
-
for
|
44 |
-
|
45 |
-
for
|
46 |
-
if
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
# Apply the transform to your PIL image
|
60 |
-
sample = transform(sample)
|
61 |
-
image_list.append(sample)
|
62 |
-
|
63 |
-
# Preprocess the mask
|
64 |
-
if "mask" in i:
|
65 |
-
mask = data_dict.get("mask")
|
66 |
-
if mask.dim() == 4:
|
67 |
-
mask = mask.squeeze(0).permute(2, 0, 1)
|
68 |
-
mask = to_pil_image(mask).convert("RGB")
|
69 |
-
mask = transform(mask)
|
70 |
-
image_list.append(mask)
|
71 |
-
|
72 |
-
# Organize the grid to have 'sample' images per row
|
73 |
-
Grid = make_grid(image_list, nrow=2)
|
74 |
-
|
75 |
-
# Change Grid tensor to be a consistent shape
|
76 |
-
# The Grid tensor has shape [1, 128, 128, 1] in some models
|
77 |
-
if Grid.dim() == 4:
|
78 |
-
# Remove the singleton batch dimension
|
79 |
-
Grid = Grid.squeeze(0)
|
80 |
-
if Grid.size(-1) == 1:
|
81 |
-
# Remove the singleton channel dimension (assuming grayscale)
|
82 |
-
Grid = Grid.squeeze(-1)
|
83 |
-
else:
|
84 |
-
raise ValueError("Expected a single channel (grayscale) image.")
|
85 |
-
|
86 |
-
# Convert the tensor grid to a PIL Image for display
|
87 |
-
img = torchvision.transforms.ToPILImage()(Grid)
|
88 |
-
images.append(img)
|
89 |
return images
|
90 |
|
91 |
def generate_images(num_images, model_id):
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
if __name__ == "__main__":
|
102 |
-
main()
|
|
|
11 |
"00002_DCGAN_MMG_MASS_ROI",
|
12 |
"00003_CYCLEGAN_MMG_DENSITY_FULL",
|
13 |
"00004_PIX2PIX_MMG_MASSES_W_MASKS",
|
14 |
+
"00019_PGGAN_CHEST_XRAY"
|
15 |
]
|
16 |
|
17 |
def main():
|
18 |
+
# Setup page configuration
|
19 |
+
st.set_page_config(page_title="MEDIGAN Generator", layout="wide")
|
20 |
+
|
21 |
+
# Main page title and description
|
22 |
+
st.title("🧠 MEDIGAN Medical Image Generator")
|
23 |
+
st.markdown("""
|
24 |
+
**Generate synthetic medical images using GAN models.**
|
25 |
+
🔍 Select model and parameters in the sidebar → Click **Generate Images**
|
26 |
+
""")
|
27 |
+
|
28 |
+
# Sidebar controls
|
29 |
+
with st.sidebar:
|
30 |
+
st.header("⚙️ Settings")
|
31 |
+
model_id = st.selectbox("Select GAN Model", model_ids)
|
32 |
+
num_images = st.number_input("Number of Images", 1, 7, 1)
|
33 |
+
generate_btn = st.button("✨ Generate Images")
|
34 |
+
|
35 |
+
# Main content area
|
36 |
+
if generate_btn:
|
37 |
+
with st.spinner(f"Generating {num_images} image(s) using {model_id}..."):
|
38 |
+
generate_images(num_images, model_id)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def torch_images(num_images, model_id):
|
41 |
generators = Generators()
|
42 |
dataloader = generators.get_as_torch_dataloader(
|
43 |
model_id=model_id,
|
44 |
install_dependencies=True,
|
45 |
num_samples=num_images,
|
46 |
+
num_workers=0,
|
47 |
+
prefetch_factor=None
|
48 |
)
|
49 |
|
50 |
images = []
|
51 |
+
for _, data_dict in enumerate(dataloader):
|
52 |
+
batch_images = []
|
53 |
+
for tensor in data_dict.values():
|
54 |
+
if tensor.dim() == 4:
|
55 |
+
tensor = tensor.squeeze(0).permute(2, 0, 1)
|
56 |
+
img = to_pil_image(tensor).convert("RGB")
|
57 |
+
batch_images.append(img)
|
58 |
+
|
59 |
+
# Create image grid
|
60 |
+
grid_tensor = make_grid(
|
61 |
+
[torchvision.transforms.ToTensor()(img) for img in batch_images],
|
62 |
+
nrow=2 if len(batch_images) > 1 else 1
|
63 |
+
)
|
64 |
+
grid_img = to_pil_image(grid_tensor)
|
65 |
+
images.append(grid_img)
|
66 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
return images
|
68 |
|
69 |
def generate_images(num_images, model_id):
|
70 |
+
# Clear previous results
|
71 |
+
st.empty()
|
72 |
+
|
73 |
+
# Generate and display new images
|
74 |
+
images = torch_images(num_images, model_id)
|
75 |
+
|
76 |
+
# Create columns for responsive layout
|
77 |
+
cols = st.columns(len(images))
|
78 |
+
|
79 |
+
for col, img in zip(cols, images):
|
80 |
+
with col:
|
81 |
+
st.image(
|
82 |
+
img,
|
83 |
+
caption=f"Generated by: {model_id}",
|
84 |
+
width=300
|
85 |
+
)
|
86 |
+
st.markdown("---")
|
87 |
|
88 |
if __name__ == "__main__":
|
89 |
+
main()
|