Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import needed libraries
|
2 |
+
import streamlit as st
|
3 |
+
import torchvision
|
4 |
+
from medigan import Generators
|
5 |
+
from torchvision.transforms.functional import to_pil_image
|
6 |
+
from torchvision.utils import make_grid
|
7 |
+
|
8 |
+
# Define the GAN models available in the app
|
9 |
+
model_ids = [
|
10 |
+
"00001_DCGAN_MMG_CALC_ROI",
|
11 |
+
"00002_DCGAN_MMG_MASS_ROI",
|
12 |
+
"00003_CYCLEGAN_MMG_DENSITY_FULL",
|
13 |
+
"00004_PIX2PIX_MMG_MASSES_W_MASKS",
|
14 |
+
"00019_PGGAN_CHEST_XRAY" # New model
|
15 |
+
]
|
16 |
+
|
17 |
+
def main():
|
18 |
+
st.title("MEDIGAN Medical Image Data Generator")
|
19 |
+
|
20 |
+
# Add dropdown widget for model selection to the sidebar
|
21 |
+
model_id = st.sidebar.selectbox("Select Model ID", model_ids)
|
22 |
+
|
23 |
+
# Add number image selector to the sidebar
|
24 |
+
num_images = st.sidebar.number_input(
|
25 |
+
"Number of Images", min_value=1, max_value=7, value=1, step=1
|
26 |
+
)
|
27 |
+
|
28 |
+
# Add generate button to the sidebar
|
29 |
+
if st.sidebar.button("Generate Images"):
|
30 |
+
generate_images(num_images, model_id)
|
31 |
+
|
32 |
+
# Task 5.4.9: Copy the torch_images function from this notebook to app.py.
|
33 |
+
def torch_images(num_images, model_id):
|
34 |
+
generators = Generators()
|
35 |
+
dataloader = generators.get_as_torch_dataloader(
|
36 |
+
model_id=model_id,
|
37 |
+
install_dependencies=True,
|
38 |
+
num_samples=num_images,
|
39 |
+
prefetch_factor=None,
|
40 |
+
)
|
41 |
+
|
42 |
+
images = []
|
43 |
+
for batch_idx, data_dict in enumerate(dataloader):
|
44 |
+
image_list = []
|
45 |
+
for i in data_dict:
|
46 |
+
if "sample" in i:
|
47 |
+
sample = data_dict.get("sample")
|
48 |
+
if sample.dim() == 4:
|
49 |
+
sample = sample.squeeze(0).permute(2, 0, 1)
|
50 |
+
|
51 |
+
sample = to_pil_image(sample).convert("RGB")
|
52 |
+
# Convert the image to a PyTorch tensor
|
53 |
+
transform = torchvision.transforms.Compose(
|
54 |
+
[
|
55 |
+
torchvision.transforms.ToTensor(),
|
56 |
+
]
|
57 |
+
)
|
58 |
+
|
59 |
+
# Apply the transform to your PIL image
|
60 |
+
sample = transform(sample)
|
61 |
+
image_list.append(sample)
|
62 |
+
|
63 |
+
# Preprocess the mask
|
64 |
+
if "mask" in i:
|
65 |
+
mask = data_dict.get("mask")
|
66 |
+
if mask.dim() == 4:
|
67 |
+
mask = mask.squeeze(0).permute(2, 0, 1)
|
68 |
+
mask = to_pil_image(mask).convert("RGB")
|
69 |
+
mask = transform(mask)
|
70 |
+
image_list.append(mask)
|
71 |
+
|
72 |
+
# Organize the grid to have 'sample' images per row
|
73 |
+
Grid = make_grid(image_list, nrow=2)
|
74 |
+
|
75 |
+
# Change Grid tensor to be a consistent shape
|
76 |
+
# The Grid tensor has shape [1, 128, 128, 1] in some models
|
77 |
+
if Grid.dim() == 4:
|
78 |
+
# Remove the singleton batch dimension
|
79 |
+
Grid = Grid.squeeze(0)
|
80 |
+
if Grid.size(-1) == 1:
|
81 |
+
# Remove the singleton channel dimension (assuming grayscale)
|
82 |
+
Grid = Grid.squeeze(-1)
|
83 |
+
else:
|
84 |
+
raise ValueError("Expected a single channel (grayscale) image.")
|
85 |
+
|
86 |
+
# Convert the tensor grid to a PIL Image for display
|
87 |
+
img = torchvision.transforms.ToPILImage()(Grid)
|
88 |
+
images.append(img)
|
89 |
+
return images
|
90 |
+
|
91 |
+
def generate_images(num_images, model_id):
|
92 |
+
st.subheader("Generated Images:")
|
93 |
+
images = torch_images(num_images, model_id) # Pass the correct parameters
|
94 |
+
for i in range(len(images)):
|
95 |
+
st.image(
|
96 |
+
images[i],
|
97 |
+
caption=f"Generated Image {i+1} (Model ID: {model_id})",
|
98 |
+
use_container_width=True,
|
99 |
+
)
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
main() # Task 5.4.4: Call the main function
|