Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,39 +1,40 @@
|
|
| 1 |
-
# Import required libraries
|
| 2 |
import streamlit as st
|
| 3 |
import torch
|
|
|
|
| 4 |
from medigan import Generators
|
| 5 |
from torchvision.transforms.functional import to_pil_image
|
| 6 |
|
| 7 |
-
|
| 8 |
-
def apply_pggan_patch():
|
| 9 |
try:
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
self.
|
| 21 |
-
|
| 22 |
-
betas=(0.5, 0.999) # Explicit tuple of floats
|
| 23 |
)
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
BaseGAN.__init__ = patched_init
|
| 32 |
-
st.success("Applied PGGAN compatibility patch!")
|
| 33 |
except Exception as e:
|
| 34 |
-
st.
|
|
|
|
| 35 |
|
| 36 |
-
# Model configuration
|
| 37 |
MODEL_IDS = [
|
| 38 |
"00001_DCGAN_MMG_CALC_ROI",
|
| 39 |
"00002_DCGAN_MMG_MASS_ROI",
|
|
@@ -46,45 +47,40 @@ def main():
|
|
| 46 |
st.set_page_config(page_title="MEDIGAN Generator", layout="wide")
|
| 47 |
st.title("🧠 Medical Image Generator")
|
| 48 |
|
| 49 |
-
# Sidebar controls
|
| 50 |
with st.sidebar:
|
| 51 |
st.header("⚙️ Settings")
|
| 52 |
model_id = st.selectbox("Select Model", MODEL_IDS)
|
| 53 |
num_images = st.slider("Number of Images", 1, 8, 4)
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
generate_images(num_images, model_id)
|
| 61 |
-
except Exception as e:
|
| 62 |
-
st.error(f"Generation failed: {str(e)}")
|
| 63 |
|
| 64 |
def generate_images(num_images, model_id):
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
)
|
| 83 |
-
img = to_pil_image(sample[0]).convert("RGB")
|
| 84 |
-
st.image(img, caption=f"Image {i+1}", use_column_width=True)
|
| 85 |
st.markdown("---")
|
| 86 |
-
|
| 87 |
-
|
|
|
|
| 88 |
|
| 89 |
if __name__ == "__main__":
|
| 90 |
main()
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
+
import os
|
| 4 |
from medigan import Generators
|
| 5 |
from torchvision.transforms.functional import to_pil_image
|
| 6 |
|
| 7 |
+
def install_and_patch_model(model_id):
|
|
|
|
| 8 |
try:
|
| 9 |
+
# Install model if not exists
|
| 10 |
+
generators = Generators()
|
| 11 |
+
if model_id not in generators.get_model_ids():
|
| 12 |
+
generators.download_and_install_model(model_id)
|
| 13 |
|
| 14 |
+
# Locate model files
|
| 15 |
+
model_path = os.path.join(os.path.expanduser("~"), ".medigan", "models", model_id)
|
| 16 |
|
| 17 |
+
# Patch base_GAN.py
|
| 18 |
+
base_gan_path = os.path.join(model_path, "model19", "base_GAN.py")
|
| 19 |
+
if os.path.exists(base_gan_path):
|
| 20 |
+
with open(base_gan_path, "r") as f:
|
| 21 |
+
content = f.read()
|
| 22 |
|
| 23 |
+
# Replace problematic optimizer lines
|
| 24 |
+
content = content.replace(
|
| 25 |
+
"betas=(self.beta1, self.beta2)",
|
| 26 |
+
"betas=(0.5, 0.999)" # Force correct beta values
|
|
|
|
| 27 |
)
|
| 28 |
|
| 29 |
+
with open(base_gan_path, "w") as f:
|
| 30 |
+
f.write(content)
|
| 31 |
+
|
| 32 |
+
st.success("Model successfully patched!")
|
| 33 |
+
return True
|
|
|
|
|
|
|
|
|
|
| 34 |
except Exception as e:
|
| 35 |
+
st.error(f"Patching failed: {str(e)}")
|
| 36 |
+
return False
|
| 37 |
|
|
|
|
| 38 |
MODEL_IDS = [
|
| 39 |
"00001_DCGAN_MMG_CALC_ROI",
|
| 40 |
"00002_DCGAN_MMG_MASS_ROI",
|
|
|
|
| 47 |
st.set_page_config(page_title="MEDIGAN Generator", layout="wide")
|
| 48 |
st.title("🧠 Medical Image Generator")
|
| 49 |
|
|
|
|
| 50 |
with st.sidebar:
|
| 51 |
st.header("⚙️ Settings")
|
| 52 |
model_id = st.selectbox("Select Model", MODEL_IDS)
|
| 53 |
num_images = st.slider("Number of Images", 1, 8, 4)
|
| 54 |
+
|
| 55 |
+
if st.button("✨ Generate Images"):
|
| 56 |
+
if "00019" in model_id and not install_and_patch_model(model_id):
|
| 57 |
+
return
|
| 58 |
+
|
| 59 |
+
with st.spinner("Generating images..."):
|
| 60 |
generate_images(num_images, model_id)
|
|
|
|
|
|
|
| 61 |
|
| 62 |
def generate_images(num_images, model_id):
|
| 63 |
+
try:
|
| 64 |
+
generators = Generators()
|
| 65 |
+
images = []
|
| 66 |
+
|
| 67 |
+
for i in range(num_images):
|
| 68 |
+
sample = generators.generate(
|
| 69 |
+
model_id=model_id,
|
| 70 |
+
num_samples=1,
|
| 71 |
+
install_dependencies=False
|
| 72 |
+
)
|
| 73 |
+
img = to_pil_image(sample[0]).convert("RGB")
|
| 74 |
+
images.append(img)
|
| 75 |
+
|
| 76 |
+
cols = st.columns(4)
|
| 77 |
+
for idx, img in enumerate(images):
|
| 78 |
+
with cols[idx % 4]:
|
| 79 |
+
st.image(img, caption=f"Image {idx+1}", use_column_width=True)
|
|
|
|
|
|
|
|
|
|
| 80 |
st.markdown("---")
|
| 81 |
+
|
| 82 |
+
except Exception as e:
|
| 83 |
+
st.error(f"Generation failed: {str(e)}")
|
| 84 |
|
| 85 |
if __name__ == "__main__":
|
| 86 |
main()
|