Commit
·
2f15fa5
1
Parent(s):
62b88d2
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from simple_unet_model import simple_unet_model
|
3 |
+
from tensorflow.keras.utils import normalize
|
4 |
+
import os
|
5 |
+
from PIL import Image, ImageOps
|
6 |
+
import numpy as np
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
#Loading Model
|
10 |
+
def get_model():
|
11 |
+
return simple_unet_model(256, 256, 1)
|
12 |
+
|
13 |
+
model = get_model()
|
14 |
+
model.load_weights('mitochondria.hdf5')
|
15 |
+
|
16 |
+
def predict(input_image):
|
17 |
+
img = Image.fromarray(input_image)
|
18 |
+
gray_img = ImageOps.grayscale(img)
|
19 |
+
resized_img = gray_img.resize((256,256))
|
20 |
+
img = np.array(resized_img)
|
21 |
+
img = np.expand_dims(img, axis = (0,3))
|
22 |
+
img = normalize(img, axis=1)
|
23 |
+
mask = model.predict(img)[0,:,:,0]
|
24 |
+
return mask
|
25 |
+
|
26 |
+
def load_examples():
|
27 |
+
files = os.listdir('examples/')
|
28 |
+
img_list = []
|
29 |
+
for file in files:
|
30 |
+
if '.jpg' in file:
|
31 |
+
img_list.append(str('examples/' + file))
|
32 |
+
return img_list
|
33 |
+
|
34 |
+
examples = load_examples()
|
35 |
+
|
36 |
+
demo = gr.Interface(fn=predict,
|
37 |
+
inputs="image",
|
38 |
+
outputs=gr.Image(shape=(256, 256)),
|
39 |
+
title = "Mitochondria Detection",
|
40 |
+
examples =examples )
|
41 |
+
demo.launch()
|