File size: 4,009 Bytes
4044388
a0ae819
a03a51d
 
 
 
 
 
 
 
 
a0ae819
a03a51d
 
 
 
a0ae819
cb2d4ba
a03a51d
 
 
 
 
 
 
cb2d4ba
a03a51d
 
 
 
 
d738bfa
3ad3115
a03a51d
 
 
bf83e38
a03a51d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb2d4ba
a03a51d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad8cf42
a03a51d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import spaces
import gradio as gr
import os 
from PIL import Image
import torch
from diffusers.utils import load_image, check_min_version
from controlnet_flux import FluxControlNetModel
from transformer_flux import FluxTransformer2DModel
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
import huggingface_hub
huggingface_hub.login(os.getenv('HF_TOKEN_FLUX'))

check_min_version("0.30.2")
transformer = FluxTransformer2DModel.from_pretrained(
        "black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dytpe=torch.bfloat16
    )

cuda_device =torch.device("cuda")
# Build pipeline
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16)
pipe = FluxControlNetInpaintingPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    controlnet=controlnet,
    transformer=transformer,
    torch_dtype=torch.bfloat16
).to(cuda_device)
pipe.transformer.to(torch.bfloat16)
pipe.controlnet.to(torch.bfloat16)


MARKDOWN = """
# Nativ Inpainting
Model by Nativ
"""


@spaces.GPU()
def process(input_image_editor,
            prompt,
            negative_prompt,
            controlnet_conditioning_scale,
            guidance_scale,
            seed,
            num_inference_steps,
            true_guidance_scale            
            ):
    image = input_image_editor['background']
    mask = input_image_editor['layers'][0]
    size = (768, 768)
    image_or = image.copy()
    
    image = image.convert("RGB").resize(size)
    mask = mask.convert("RGB").resize(size)
    generator = torch.Generator(device="cuda").manual_seed(seed)
    result = pipe(
    prompt=prompt,
    height=size[1],
    width=size[0],
    control_image=image,
    control_mask=mask,
    num_inference_steps=num_inference_steps,
    generator=generator,
    controlnet_conditioning_scale=controlnet_conditioning_scale,
    guidance_scale=guidance_scale,
    negative_prompt=negative_prompt,
    true_guidance_scale=true_guidance_scale
    ).images[0]

    return result.resize((image_or.size[:2]))

with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column():
            input_image_editor_component = gr.ImageEditor(
                label='Image',
                type='pil',
                sources=["upload", "webcam"],
                image_mode='RGB',
                layers=False,
                brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))

            prompt = gr.Textbox(lines=2, placeholder="Enter prompt here...")
            negative_prompt = gr.Textbox(lines=2, placeholder="Enter negative_prompt here...")
            controlnet_conditioning_scale = gr.Slider(minimum=0, step=0.01, maximum=1, value=0.9, label="controlnet_conditioning_scale")
            guidance_scale = gr.Slider(minimum=1, step=0.5, maximum=10, value=3.5, label="Image to generate")
            seed  = gr.Slider(minimum=0, step=1, maximum=10000000, value=124, label="Seed Value")
            num_inference_steps = gr.Slider(minimum=1, step=1, maximum=30, value=10, label="num_inference_steps")
            true_guidance_scale = gr.Slider(minimum=1, step=1, maximum=10, value=3.5, label="true_guidance_scale")
            

            
            submit_button_component = gr.Button(
                    value='Submit', variant='primary', scale=0)
            
        with gr.Column():
            output_image_component = gr.Image(
                type='pil', image_mode='RGB', label='Generated image', format="png")

    submit_button_component.click(
        fn=process,
        inputs=[
            input_image_editor_component,
            prompt,
            negative_prompt,
            controlnet_conditioning_scale,
            guidance_scale,
            seed,
            num_inference_steps,
            true_guidance_scale  

        ],
        outputs=[
            output_image_component,
        ]
    )



demo.launch(debug=False, show_error=True,share=True)