Spaces:
Runtime error
Runtime error
import gradio as gr | |
# Load your model and tokenizer | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Specify the model name | |
model_name = "ahmedbasemdev/llama-3.2-3b-ChatBot" | |
# Load the model with 8-bit quantization | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map="auto", # Automatically map the model to the available device (CPU) | |
load_in_8bit=True, # Enable 8-bit quantization | |
torch_dtype=torch.float16 # Use mixed precision | |
) | |
# Load the tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def single_inference(question): | |
messages = [] | |
messages.append({"role": "user", "content": question}) | |
input_ids = tokenizer.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
return_tensors="pt" | |
).to(model.device) | |
terminators = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
] | |
outputs = model.generate( | |
input_ids, | |
max_new_tokens=256, | |
eos_token_id=terminators, | |
do_sample=True, | |
temperature=0.2, | |
) | |
response = outputs[0][input_ids.shape[-1]:] | |
output = tokenizer.decode(response, skip_special_tokens=True) | |
return output | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=single_inference, # Function to wrap | |
inputs=gr.Textbox(lines=2, placeholder="Ask a question..."), # Input type | |
outputs=gr.Textbox(label="Response"), # Output type | |
title="Chat with Your Model", # App title | |
description="Enter a question, and the model will generate a response.", # App description | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch() | |