Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,38 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
# Load your model and tokenizer
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
import torch
|
|
|
6 |
|
7 |
-
#
|
8 |
model_name = "ahmedbasemdev/llama-3.2-3b-ChatBot"
|
9 |
|
10 |
-
# Load the model
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
)
|
17 |
|
18 |
# Load the tokenizer
|
19 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
20 |
|
|
|
21 |
def single_inference(question):
|
22 |
messages = []
|
23 |
-
|
24 |
messages.append({"role": "user", "content": question})
|
25 |
|
|
|
26 |
input_ids = tokenizer.apply_chat_template(
|
27 |
messages,
|
28 |
add_generation_prompt=True,
|
29 |
return_tensors="pt"
|
30 |
-
).to(
|
31 |
|
|
|
32 |
terminators = [
|
33 |
tokenizer.eos_token_id,
|
34 |
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
@@ -45,15 +49,15 @@ def single_inference(question):
|
|
45 |
output = tokenizer.decode(response, skip_special_tokens=True)
|
46 |
return output
|
47 |
|
48 |
-
#
|
|
|
49 |
interface = gr.Interface(
|
50 |
-
fn=single_inference,
|
51 |
-
inputs=
|
52 |
-
outputs=
|
53 |
-
title="
|
54 |
-
description="
|
55 |
)
|
56 |
|
57 |
-
# Launch the app
|
58 |
-
|
59 |
-
interface.launch()
|
|
|
|
|
|
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
import torch
|
3 |
+
import gradio as gr
|
4 |
|
5 |
+
# Model and tokenizer paths
|
6 |
model_name = "ahmedbasemdev/llama-3.2-3b-ChatBot"
|
7 |
|
8 |
+
# Load the model
|
9 |
+
print("Loading the model...")
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
+
|
12 |
+
# Apply dynamic quantization to reduce model size and improve CPU performance
|
13 |
+
print("Applying quantization...")
|
14 |
+
model = torch.quantization.quantize_dynamic(
|
15 |
+
model, # Model to quantize
|
16 |
+
{torch.nn.Linear}, # Layers to quantize (e.g., Linear layers)
|
17 |
+
dtype=torch.qint8, # Quantized data type
|
18 |
)
|
19 |
|
20 |
# Load the tokenizer
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
|
23 |
+
# Define the inference function
|
24 |
def single_inference(question):
|
25 |
messages = []
|
|
|
26 |
messages.append({"role": "user", "content": question})
|
27 |
|
28 |
+
# Tokenize the input
|
29 |
input_ids = tokenizer.apply_chat_template(
|
30 |
messages,
|
31 |
add_generation_prompt=True,
|
32 |
return_tensors="pt"
|
33 |
+
).to("cpu") # Ensure everything runs on CPU
|
34 |
|
35 |
+
# Generate a response
|
36 |
terminators = [
|
37 |
tokenizer.eos_token_id,
|
38 |
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
|
|
49 |
output = tokenizer.decode(response, skip_special_tokens=True)
|
50 |
return output
|
51 |
|
52 |
+
# Gradio interface
|
53 |
+
print("Setting up Gradio app...")
|
54 |
interface = gr.Interface(
|
55 |
+
fn=single_inference,
|
56 |
+
inputs="text",
|
57 |
+
outputs="text",
|
58 |
+
title="Chatbot",
|
59 |
+
description="Ask me anything!"
|
60 |
)
|
61 |
|
62 |
+
# Launch the Gradio app
|
63 |
+
interface.launch()
|
|