ahmedbasemdev commited on
Commit
315691e
·
verified ·
1 Parent(s): 1374982

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ # Load your model and tokenizer
4
+ from transformers import AutoModelForCausalLM, AutoTokenizer
5
+
6
+ model_name = "ahmedbasemdev/LLama3.2-fine-tuned" # Replace with your model name
7
+ model = AutoModelForCausalLM.from_pretrained(model_name)
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+
10
+ def single_inference(question):
11
+ messages = []
12
+
13
+ messages.append({"role": "user", "content": question})
14
+
15
+ input_ids = tokenizer.apply_chat_template(
16
+ messages,
17
+ add_generation_prompt=True,
18
+ return_tensors="pt"
19
+ ).to(model.device)
20
+
21
+ terminators = [
22
+ tokenizer.eos_token_id,
23
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
24
+ ]
25
+
26
+ outputs = model.generate(
27
+ input_ids,
28
+ max_new_tokens=256,
29
+ eos_token_id=terminators,
30
+ do_sample=True,
31
+ temperature=0.2,
32
+ )
33
+ response = outputs[0][input_ids.shape[-1]:]
34
+ output = tokenizer.decode(response, skip_special_tokens=True)
35
+ return output
36
+
37
+ # Create the Gradio interface
38
+ interface = gr.Interface(
39
+ fn=single_inference, # Function to wrap
40
+ inputs=gr.Textbox(lines=2, placeholder="Ask a question..."), # Input type
41
+ outputs=gr.Textbox(label="Response"), # Output type
42
+ title="Chat with Your Model", # App title
43
+ description="Enter a question, and the model will generate a response.", # App description
44
+ )
45
+
46
+ # Launch the app
47
+ if __name__ == "__main__":
48
+ interface.launch()