File size: 17,613 Bytes
254fdf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import hashlib
import os
import urllib
import warnings
from typing import Union, List
from pkg_resources import packaging

import torch
from PIL import Image
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
from tqdm import tqdm
import numpy as np

from .build_model import build_model
from .simple_tokenizer import SimpleTokenizer as _Tokenizer

from fvcore.common.config import CfgNode

try:
    from torchvision.transforms import InterpolationMode
    BICUBIC = InterpolationMode.BICUBIC
except ImportError:
    BICUBIC = Image.BICUBIC


if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"):
    warnings.warn("PyTorch version 1.7.1 or higher is recommended")


__all__ = ["available_models", "load", "tokenize", "encode_text_with_prompt_ensemble",
           "get_similarity_map", "clip_feature_surgery", "similarity_map_to_points"]
_tokenizer = _Tokenizer()

_MODELS = {
    "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
    "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
    "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
    "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
    "RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
    "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
    "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
    "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
    "ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
    "CS-RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
    "CS-RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
    "CS-RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
    "CS-RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
    "CS-RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
    "CS-ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
    "CS-ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
    "CS-ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
    "CS-ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
}


def _download(url: str, root: str):
    os.makedirs(root, exist_ok=True)
    filename = os.path.basename(url)

    expected_sha256 = url.split("/")[-2]
    download_target = os.path.join(root, filename)

    if os.path.exists(download_target) and not os.path.isfile(download_target):
        raise RuntimeError(f"{download_target} exists and is not a regular file")

    if os.path.isfile(download_target):
        if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
            return download_target
        else:
            warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")

    with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
        with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
            while True:
                buffer = source.read(8192)
                if not buffer:
                    break

                output.write(buffer)
                loop.update(len(buffer))

    if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
        raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")

    return download_target


def _convert_image_to_rgb(image):
    return image.convert("RGB")


def _transform(n_px):
    return Compose([
        Resize((n_px, n_px), interpolation=BICUBIC),
        #CenterCrop(n_px), # rm center crop to explain whole image
        _convert_image_to_rgb,
        ToTensor(),
        Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
    ])


def available_models() -> List[str]:
    """Returns the names of available CLIP models"""
    return list(_MODELS.keys())


def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None,cfg: CfgNode=None, train_bool: bool = True,LT: bool = False,groupvit: bool = False):
    """Load a CLIP model

    Parameters
    ----------
    name : str
        A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict

    device : Union[str, torch.device]
        The device to put the loaded model

    jit : bool
        Whether to load the optimized JIT model or more hackable non-JIT model (default).

    download_root: str
        path to download the model files; by default, it uses "~/.cache/clip"

    Returns
    -------
    model : torch.nn.Module
        The CLIP model

    preprocess : Callable[[PIL.Image], torch.Tensor]
        A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
    """
    if name in _MODELS:
        model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
    elif os.path.isfile(name):
        model_path = name
    else:
        raise RuntimeError(f"Model {name} not found; available models = {available_models()}")

    with open(model_path, 'rb') as opened_file:
        try:
            # loading JIT archive
            model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval()
            state_dict = None
        except RuntimeError:
            # loading saved state dict
            if jit:
                warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
                jit = False
            state_dict = torch.load(opened_file, map_location="cpu")

    # model_laion, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:laion/CLIP-ViT-B-16-laion2B-s34B-b88K')    
    # laion_state_dict = model_laion.state_dict()

    
    if not jit:
        model = build_model(name, state_dict or model.state_dict(),cfg,train_bool).to(device)
        # model = build_model(name, laion_state_dict,cfg,num_classes).to(device)
        if str(device) == "cpu":
            model.float()
        return model, _transform(model.visual.input_resolution)

    # patch the device names
    device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
    device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]

    def patch_device(module):
        try:
            graphs = [module.graph] if hasattr(module, "graph") else []
        except RuntimeError:
            graphs = []

        if hasattr(module, "forward1"):
            graphs.append(module.forward1.graph)

        for graph in graphs:
            for node in graph.findAllNodes("prim::Constant"):
                if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
                    node.copyAttributes(device_node)

    model.apply(patch_device)
    patch_device(model.encode_image)
    patch_device(model.encode_text)

    # patch dtype to float32 on CPU
    if str(device) == "cpu":
        float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
        float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
        float_node = float_input.node()

        def patch_float(module):
            try:
                graphs = [module.graph] if hasattr(module, "graph") else []
            except RuntimeError:
                graphs = []

            if hasattr(module, "forward1"):
                graphs.append(module.forward1.graph)

            for graph in graphs:
                for node in graph.findAllNodes("aten::to"):
                    inputs = list(node.inputs())
                    for i in [1, 2]:  # dtype can be the second or third argument to aten::to()
                        if inputs[i].node()["value"] == 5:
                            inputs[i].node().copyAttributes(float_node)

        model.apply(patch_float)
        patch_float(model.encode_image)
        patch_float(model.encode_text)

        model.float()

    return model, _transform(model.input_resolution.item())


def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]:
    """
    Returns the tokenized representation of given input string(s)

    Parameters
    ----------
    texts : Union[str, List[str]]
        An input string or a list of input strings to tokenize

    context_length : int
        The context length to use; all CLIP models use 77 as the context length

    truncate: bool
        Whether to truncate the text in case its encoding is longer than the context length

    Returns
    -------
    A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
    We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
    """
    if isinstance(texts, str):
        texts = [texts]

    sot_token = _tokenizer.encoder["<|startoftext|>"]
    eot_token = _tokenizer.encoder["<|endoftext|>"]
    all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
    if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
        result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
    else:
        result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)

    for i, tokens in enumerate(all_tokens):
        if len(tokens) > context_length:
            if truncate:
                tokens = tokens[:context_length]
                tokens[-1] = eot_token
            else:
                raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
        result[i, :len(tokens)] = torch.tensor(tokens)

    return result


def encode_text_with_prompt_ensemble(model, texts, device, prompt_templates=None,no_module=False):

    # using default prompt templates for ImageNet
    if prompt_templates == None:
        prompt_templates = ['a bad photo of a {}.', 'a photo of many {}.', 'a sculpture of a {}.', 'a photo of the hard to see {}.', 'a low resolution photo of the {}.', 'a rendering of a {}.', 'graffiti of a {}.', 'a bad photo of the {}.', 'a cropped photo of the {}.', 'a tattoo of a {}.', 'the embroidered {}.', 'a photo of a hard to see {}.', 'a bright photo of a {}.', 'a photo of a clean {}.', 'a photo of a dirty {}.', 'a dark photo of the {}.', 'a drawing of a {}.', 'a photo of my {}.', 'the plastic {}.', 'a photo of the cool {}.', 'a close-up photo of a {}.', 'a black and white photo of the {}.', 'a painting of the {}.', 'a painting of a {}.', 'a pixelated photo of the {}.', 'a sculpture of the {}.', 'a bright photo of the {}.', 'a cropped photo of a {}.', 'a plastic {}.', 'a photo of the dirty {}.', 'a jpeg corrupted photo of a {}.', 'a blurry photo of the {}.', 'a photo of the {}.', 'a good photo of the {}.', 'a rendering of the {}.', 'a {} in a video game.', 'a photo of one {}.', 'a doodle of a {}.', 'a close-up photo of the {}.', 'a photo of a {}.', 'the origami {}.', 'the {} in a video game.', 'a sketch of a {}.', 'a doodle of the {}.', 'a origami {}.', 'a low resolution photo of a {}.', 'the toy {}.', 'a rendition of the {}.', 'a photo of the clean {}.', 'a photo of a large {}.', 'a rendition of a {}.', 'a photo of a nice {}.', 'a photo of a weird {}.', 'a blurry photo of a {}.', 'a cartoon {}.', 'art of a {}.', 'a sketch of the {}.', 'a embroidered {}.', 'a pixelated photo of a {}.', 'itap of the {}.', 'a jpeg corrupted photo of the {}.', 'a good photo of a {}.', 'a plushie {}.', 'a photo of the nice {}.', 'a photo of the small {}.', 'a photo of the weird {}.', 'the cartoon {}.', 'art of the {}.', 'a drawing of the {}.', 'a photo of the large {}.', 'a black and white photo of a {}.', 'the plushie {}.', 'a dark photo of a {}.', 'itap of a {}.', 'graffiti of the {}.', 'a toy {}.', 'itap of my {}.', 'a photo of a cool {}.', 'a photo of a small {}.', 'a tattoo of the {}.', 'there is a {} in the scene.', 'there is the {} in the scene.', 'this is a {} in the scene.', 'this is the {} in the scene.', 'this is one {} in the scene.']

    text_features = []
    for t in texts:
        prompted_t = [template.format(t) for template in prompt_templates]
        prompted_t = tokenize(prompted_t).to(device)
        if no_module:
            class_embeddings = model.encode_text(prompted_t)
        else:
            class_embeddings = model.module.encode_text(prompted_t)
        class_embeddings = class_embeddings.clone() / class_embeddings.norm(dim=-1, keepdim=True)
        class_embedding = class_embeddings.mean(dim=0) # mean of all prompts, from [85,512] to [512]
        # class_embedding /= class_embedding.norm()
        class_embedding = class_embedding.clone() / class_embedding.norm() # change here
        text_features.append(class_embedding)
    text_features = torch.stack(text_features, dim=1).to(device).t()

    return text_features


def get_similarity_map(sm, shape):
        
    # min-max norm
    sm = (sm - sm.min(1, keepdim=True)[0]) / (sm.max(1, keepdim=True)[0] - sm.min(1, keepdim=True)[0]) # torch.Size([1, 196, 1])

    # reshape
    side = int(sm.shape[1] ** 0.5) # square output, side = 14
    sm = sm.reshape(sm.shape[0], side, side, -1).permute(0, 3, 1, 2) # torch.Size([1, 1, 14, 14])

    # interpolate
    sm = torch.nn.functional.interpolate(sm, shape, mode='bilinear') # torch.Size([1, 1, 512, 512])
    sm = sm.permute(0, 2, 3, 1) # torch.Size([1, 512, 512, 1])
    
    return sm


def clip_feature_surgery(image_features, text_features, redundant_feats=None, t=2):
    
    if redundant_feats != None:
        similarity = image_features @ (text_features - redundant_feats).t() # torch.Size([1,197, 1])

    else:
        # weights to restrain influence of obvious classes on others
        prob = image_features[:, :1, :] @ text_features.t() # torch.Size([1, 1, 512]) @ torch.Size([512, 59]) = torch.Size([1, 1, 59])
        prob = (prob * 2).softmax(-1) #torch.Size([1, 1, 59])
        w = prob / prob.mean(-1, keepdim=True) #torch.Size([1, 1, 59])

        # element-wise multiplied features
        b, n_t, n_i, c = image_features.shape[0], text_features.shape[0], image_features.shape[1], image_features.shape[2] # b = 1, n_t = 59, n_i = 197, c = 512
        feats = image_features.reshape(b, n_i, 1, c) * text_features.reshape(1, 1, n_t, c) #torch.Size([1, 197, 59, 512])
        feats *= w.reshape(1, 1, n_t, 1)
        redundant_feats = feats.mean(2, keepdim=True) # along cls dim
        feats = feats - redundant_feats
        
        # sum the element-wise multiplied features as cosine similarity
        similarity = feats.sum(-1)

    return similarity 


# sm shape N_t
def similarity_map_to_points(sm, shape, t=0.8, down_sample=2):
    # sm.shape = [196] 
    # shape = [512, 512]
    side = int(sm.shape[0] ** 0.5) # square root of 196 = 14
    sm = sm.reshape(1, 1, side, side) # torch.Size([1, 1, 14, 14])

    # down sample to smooth results
    down_side = side // down_sample
    sm = torch.nn.functional.interpolate(sm, (down_side, down_side), mode='bilinear')[0, 0, :, :] # torch.Size([7, 7])
    h, w = sm.shape # 7, 7
    sm = sm.reshape(-1) # torch.Size([49]), 7*7 = 49

    sm = (sm - sm.min()) / (sm.max() - sm.min()) # min-max norm
    rank = sm.sort(0)[1] # sort and get indices, torch.Size([49])
    scale_h = float(shape[0]) / h # 512 / 7 = 73.14
    scale_w = float(shape[1]) / w # 512 / 7 = 73.14

    num = min((sm >= t).sum(), sm.shape[0] // 2)
    labels = np.ones(num * 2).astype('uint8') 
    labels[num:] = 0
    points = []

    # positives
    for idx in rank[-num:]:
        x = min((idx % w + 0.5) * scale_w, shape[1] - 1)  # +0.5 to center
        y = min((idx // w + 0.5) * scale_h, shape[0] - 1)
        points.append([int(x.item()), int(y.item())])

    # negatives
    for idx in rank[:num]:
        x = min((idx % w + 0.5) * scale_w, shape[1] - 1)
        y = min((idx // w + 0.5) * scale_h, shape[0] - 1)
        points.append([int(x.item()), int(y.item())])

    return points, labels