File size: 25,878 Bytes
254fdf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
from collections import OrderedDict
from typing import Tuple, Union
import math
# import torchvision
import torch
import numpy as np
import torch
from torch import nn
# from torch.nn.modules.utils import _pair
from torch.nn import Dropout
from functools import reduce
from operator import mul
# from vpt.src.utils import logging
from .ca import Cross_Attention

# logger = logging.get_logger("visual_prompt")


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1):
        super().__init__()

        # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
        self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu1 = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.relu2 = nn.ReLU(inplace=True)

        self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()

        self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu3 = nn.ReLU(inplace=True)

        self.downsample = None
        self.stride = stride

        if stride > 1 or inplanes != planes * Bottleneck.expansion:
            # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
            self.downsample = nn.Sequential(OrderedDict([
                ("-1", nn.AvgPool2d(stride)),
                ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
                ("1", nn.BatchNorm2d(planes * self.expansion))
            ]))

    def forward(self, x: torch.Tensor):
        identity = x

        out = self.relu1(self.bn1(self.conv1(x)))
        out = self.relu2(self.bn2(self.conv2(out)))
        out = self.avgpool(out)
        out = self.bn3(self.conv3(out))

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu3(out)
        return out

# implement attention module for v-v self-attention
class Attention(nn.Module):
    def __init__(self, out_dim, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., settings=''):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(out_dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.settings = settings

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        # original self-attention for the original path
        attn_ori = (q @ k.transpose(-2, -1)) * self.scale
        attn_ori = attn_ori.softmax(dim=-1)
        attn_ori = self.attn_drop(attn_ori)

        # replace k & q by v
        k = v
        q = k

        # resnets have only one self-attention, norm and larger scale perform better
        if self.settings == 'resnet':
            k = k / (k.norm(p=2, dim=-1, keepdim=True) + 1e-6)
            q = k
            scale = self.scale * 8
        else:
            scale = self.scale
        
        # self-attention, higher temperate for resnets performs better
        attn = (q @ k.transpose(-2, -1)) * scale
        attn = (attn).softmax(dim=-1)
        attn = self.attn_drop(attn)

        x_ori = (attn_ori @ v).transpose(1, 2).reshape(B, N, C)
        x = (attn @ v).transpose(1, 2).reshape(B, N, C) # clip_surgery
        #x = v.transpose(1, 2).reshape(B, N, C) # mask_clip
        x = self.proj_drop(self.proj(x))
        x_ori = self.proj_drop(self.proj(x_ori))
        return [x, x_ori]


class AttentionPool2d(nn.Module):
    def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
        super().__init__()
        self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
        self.num_heads = num_heads

        self.attn = None
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.output_dim = output_dim


    def forward(self, x):
        # reform transformer layer after init and load weights, using v only
        if self.attn == None:
            self.attn = Attention(self.output_dim, self.embed_dim, self.num_heads, True)
            self.attn.qkv.weight = torch.nn.Parameter(torch.cat([self.v_proj.weight, self.v_proj.weight, self.v_proj.weight], 0))
            self.attn.qkv.bias = torch.nn.Parameter(torch.cat([self.v_proj.bias, self.v_proj.bias, self.v_proj.bias]))
            self.attn.proj.weight = self.c_proj.weight
            self.attn.proj.bias = self.c_proj.bias

        x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1)  # NCHW -> (HW)NC
        x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0)  # (HW+1)NC

        side = int((self.positional_embedding.shape[0] - 1) ** 0.5)
        new_side = int((x.shape[0] - 1) ** 0.5)

        # update the position embedding during inference for varied input size
        if side != new_side:
            new_pos = self.positional_embedding[1:, :].reshape(-1, side, side, x.shape[-1]).permute(0, 3, 1, 2)
            new_pos = torch.nn.functional.interpolate(new_pos, (new_side, new_side), mode='bilinear')
            new_pos = new_pos.reshape(-1, x.shape[-1], new_side * new_side).transpose(1, 2)
            self.positional_embedding.data = torch.cat([self.positional_embedding[:1, :], new_pos[0]], 0)

        x = x + self.positional_embedding[:, None, :].to(x.dtype)  # (HW+1)NC
        x, x_ori = self.attn(x.transpose(0, 1))

        # cls token from the original path, and img tokens from the new path
        x[:, 0, :] = x_ori[:, 0, :]
        return x


class ModifiedResNet(nn.Module):
    """
    A ResNet class that is similar to torchvision's but contains the following changes:
    - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
    - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
    - The final pooling layer is a QKV attention instead of an average pool
    """

    def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
        super().__init__()
        self.output_dim = output_dim
        self.input_resolution = input_resolution

        # the 3-layer stem
        self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(width // 2)
        self.relu1 = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(width // 2)
        self.relu2 = nn.ReLU(inplace=True)
        self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
        self.bn3 = nn.BatchNorm2d(width)
        self.relu3 = nn.ReLU(inplace=True)
        self.avgpool = nn.AvgPool2d(2)

        # residual layers
        self._inplanes = width  # this is a *mutable* variable used during construction
        self.layer1 = self._make_layer(width, layers[0])
        self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
        self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
        self.layer4 = self._make_layer(width * 8, layers[3], stride=2)

        embed_dim = width * 32  # the ResNet feature dimension
        self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)

    def _make_layer(self, planes, blocks, stride=1):
        layers = [Bottleneck(self._inplanes, planes, stride)]

        self._inplanes = planes * Bottleneck.expansion
        for _ in range(1, blocks):
            layers.append(Bottleneck(self._inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        def stem(x):
            x = self.relu1(self.bn1(self.conv1(x)))
            x = self.relu2(self.bn2(self.conv2(x)))
            x = self.relu3(self.bn3(self.conv3(x)))
            x = self.avgpool(x)
            return x

        x = x.type(self.conv1.weight.dtype)
        x = stem(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.attnpool(x)

        # shape BNC
        return x


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x.clone().type(torch.float32))
        return ret.type(orig_type)


class QuickGELU(nn.Module):
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)


class ResidualAttentionBlock(nn.Module):
    def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
        super().__init__()

        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, d_model * 4)),
            ("gelu", QuickGELU()),
            ("c_proj", nn.Linear(d_model * 4, d_model))
        ]))
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask
        self.attn_probs = None
        self.attn_grad = None
        self.attn_keys = None

    def set_attn_probs(self, attn_probs):
        self.attn_probs = attn_probs
    
    def set_attn_keys(self, attn_keys):
        self.attn_keys = attn_keys

    def set_attn_grad(self, attn_grad):
        self.attn_grad = attn_grad
        
    def attention(self, x: torch.Tensor, attn_mask: torch.Tensor = None, mode="train"):
        self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
        if isinstance(self.attn, Attention):
            x = x.transpose(0, 1)
            x, x_ori = self.attn(x)
            return [x.transpose(0, 1), x_ori.transpose(0, 1)]
        else:
            return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]

    def forward(self, x, attn_mask: torch.Tensor = None, mode="train"):
        # dual paths for blocks deeper than "d"
        if isinstance(self.attn, Attention):
            if isinstance(x, list):
                x, x_ori = x
                x_res = self.attention(self.ln_1(x_ori))
                x_res, x_ori_res = x_res
                x_ori += x_ori_res
                x_ori = x_ori + self.mlp(self.ln_2(x_ori))
                x += x_res # skip ffn for the new path
                return [x, x_ori]

            # start of dual path
            else:
                x_res = self.attention(self.ln_1(x))
                if isinstance(x_res, list):
                    x_res, x_ori_res = x_res
                    x_ori = x + x_ori_res
                    x_ori = x_ori + self.mlp(self.ln_2(x_ori))
                    x += x_res
                    return [x, x_ori]

        # single path before "d"
        else:
            x = x + self.attention(self.ln_1(x))
            x = x + self.mlp(self.ln_2(x))
        return x


class Transformer(nn.Module):
    def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, need_weights: bool = False):
        super().__init__()
        self.width = width
        self.layers = layers
        self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for i in range(layers)])
        self.ca = Cross_Attention(d_model=768)
    
    def forward(self, x: torch.Tensor,layers=12,text_bool=False,text_features=None,mode="train"):
        for idx,l in enumerate(self.resblocks):
            x=l(x) 
            
            if idx+1 == layers:
                if text_bool:
                    return x
                
                # implement cross attention between image tokens and text tokens
                x_l = x[0]
                x_ori_l = x[1]
                text_features = text_features.unsqueeze(0).repeat(x_l.shape[0], 1, 1)
                x_l = x_l.permute(1, 0, 2)
                text_features = text_features.permute(1, 0, 2)

                if mode == "test":
                    x_l = x_l.repeat(text_features.shape[0], 1, 1)
                x_l_ca = self.ca(x_l, text_features)
                x_l_ca = x_l_ca.permute(1, 0, 2)

                x_ori_l = x_ori_l.permute(1, 0, 2)
                if mode == "test":
                    x_ori_l = x_ori_l.repeat(text_features.shape[0], 1, 1)
                x_ori_l_ca = self.ca(x_ori_l, text_features)
                x_ori_l_ca = x_ori_l_ca.permute(1, 0, 2)
                
                return [x_l_ca, x_ori_l_ca]
          

class PromptedVisionTransformer(nn.Module):
    def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int,prompt_config:dict,train_bool:bool):
        super().__init__()
        self.train_bool = train_bool
        self.patch_size = patch_size
        self.input_resolution = input_resolution
        self.output_dim = output_dim
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
        
        scale = width ** -0.5
        self.class_embedding = nn.Parameter(scale * torch.randn(width))
        self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
        self.ln_pre = LayerNorm(width)

        self.transformer = Transformer(width, layers, heads, need_weights=True)
        self.attn = None
        self.embed_dim = width
        self.num_heads = heads

        self.ln_post = LayerNorm(width)
        self.proj = nn.Parameter(scale * torch.randn(width, output_dim))

        self.prompt_config = prompt_config
        self.prompt_dropout = Dropout(self.prompt_config.DROPOUT)
        
        num_tokens = self.prompt_config.NUM_TOKENS
        self.num_tokens = num_tokens  # number of prompted tokens

        # if project the prompt embeddings
        if self.prompt_config.PROJECT > -1:
            # only for prepend / add
            prompt_dim = self.prompt_config.PROJECT
            self.prompt_proj = nn.Linear(
                prompt_dim, 768)
            nn.init.kaiming_normal_(
                self.prompt_proj.weight, a=0, mode='fan_out')
        else:
            prompt_dim = 768
            self.prompt_proj = nn.Identity()
        
        # initiate prompt:
        if self.prompt_config.INITIATION == "random":
            val = math.sqrt(6. / float(3 * reduce(mul, (patch_size,patch_size), 1) + prompt_dim))  # noqa

            self.prompt_embeddings = nn.Parameter(torch.zeros(
                1, num_tokens, prompt_dim))
            # xavier_uniform initialization
            nn.init.uniform_(self.prompt_embeddings.data, -val, val)

            if self.prompt_config.DEEP:  # noqa
                total_d_layer = 12-1 #config.transformer["num_layers"]-1
                self.deep_prompt_embeddings = nn.Parameter(torch.zeros(
                    total_d_layer, num_tokens, prompt_dim))
                # xavier_uniform initialization
                nn.init.uniform_(self.deep_prompt_embeddings.data, -val, val)

        else:
            raise ValueError("Other initiation scheme is not supported")

        if not self.train_bool:
            if self.attn == None:
                # apply architecture surgery on the last 6 blocks
                for i in range(1, 7): # surgery 7, maskclip 2
                    self.attn = Attention(self.embed_dim, self.embed_dim, self.num_heads, True)
                    self.attn.qkv.weight.data = self.transformer.resblocks[-i].attn.in_proj_weight.clone()
                    self.attn.qkv.bias.data = self.transformer.resblocks[-i].attn.in_proj_bias.clone()
                    self.attn.proj.weight.data = self.transformer.resblocks[-i].attn.out_proj.weight.clone()
                    self.attn.proj.bias.data = self.transformer.resblocks[-i].attn.out_proj.bias.clone()
                    self.transformer.resblocks[-i].attn = self.attn

    # @torch.no_grad()
    def forward(self, x: torch.Tensor,layers: int = 12,text_features:torch.Tensor = None,mode:str = "test"):
        if self.attn == None:
            # apply architecture surgery on the last 6 blocks
            for i in range(1, 7): # surgery 7, maskclip 2
                self.attn = Attention(self.embed_dim, self.embed_dim, self.num_heads, True)
                self.attn.qkv.weight.data = self.transformer.resblocks[-i].attn.in_proj_weight.clone()
                self.attn.qkv.bias.data = self.transformer.resblocks[-i].attn.in_proj_bias.clone()
                self.attn.proj.weight.data = self.transformer.resblocks[-i].attn.out_proj.weight.clone()
                self.attn.proj.bias.data = self.transformer.resblocks[-i].attn.out_proj.bias.clone()
                self.transformer.resblocks[-i].attn = self.attn
        B = x.shape[0]  

        x = self.conv1(x)  # shape = [*, width, grid, grid]

        x = x.reshape(x.shape[0], x.shape[1], -1)  # shape = [*, width, grid ** 2]
        x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width]  ,, torch.Size([B, 196, 768])       
        x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1)  # shape = [*, grid ** 2 + 1, width]                
        side = int((self.positional_embedding.shape[0] - 1) ** 0.5)
        new_side = int((x.shape[1] - 1) ** 0.5)
        # update the position embedding during inference for varied input size
        if side != new_side:
            new_pos = self.positional_embedding[1:, :].reshape(-1, side, side, x.shape[-1]).permute(0, 3, 1, 2)
            new_pos = torch.nn.functional.interpolate(new_pos, (new_side, new_side), mode='bilinear')
            new_pos = new_pos.reshape(-1, x.shape[-1], new_side * new_side).transpose(1, 2)
            self.positional_embedding.data = torch.cat([self.positional_embedding[:1, :], new_pos[0]], 0)
        
        pos = self.positional_embedding.to(x.dtype)
        x = x + pos # add positional embedding torch.Size([B, 197, 768])
        # ADD VISUAL PROMPTS HERE
        if self.num_tokens > 0:
            x = torch.cat((
                    x[:, :1, :],
                    self.prompt_dropout(self.prompt_proj(self.prompt_embeddings).expand(B, -1, -1)),
                    x[:, 1:, :]
                ), dim=1)
        # (batch_size, cls_token + n_prompt + n_patches, hidden_dim)
        x = self.ln_pre(x) # layer norm

        x = x.permute(1, 0, 2)  # NLD -> LND
        if mode == "train":
            x_multi = torch.zeros(len(layers),x.shape[1],x.shape[0],512).to(x.device)
        elif mode == "test":
            x_multi = torch.zeros(len(layers),text_features.shape[0],x.shape[0],512).to(x.device)
        for d,layer in enumerate(layers):
            x_l, x_ori_l = self.transformer(x,layers=layer,text_bool=False, text_features=text_features,mode = mode)
            x_l[0, :, :] = x_ori_l[0, :, :] # clip_surgery
            x_l = x_l.permute(1, 0, 2)  # LND -> NLD

            x_l = self.ln_post(x_l) # layer norm
            x_l = x_l @ self.proj
            x_multi[d] = x_l
        return x_multi   


class ModifiedCLIPSurgery(nn.Module):
    def __init__(self,
                 embed_dim: int,
                 # vision
                 image_resolution: int,
                 vision_layers: Union[Tuple[int, int, int, int], int],
                 vision_width: int,
                 vision_patch_size: int,
                 # text
                 context_length: int,
                 vocab_size: int,
                 transformer_width: int,
                 transformer_heads: int,
                 transformer_layers: int,
                 cfg:dict,
                 train_bool:bool,
                 ):
        super().__init__()
        if "prompt" in cfg.MODEL.TRANSFER_TYPE:
            prompt_cfg = cfg.MODEL.PROMPT
        else:
            prompt_cfg = None
        
        self.prompt_config = prompt_cfg
        self.context_length = context_length

        if isinstance(vision_layers, (tuple, list)):
            vision_heads = vision_width * 32 // 64
            self.visual = ModifiedResNet(
                layers=vision_layers,
                output_dim=embed_dim,
                heads=vision_heads,
                input_resolution=image_resolution,
                width=vision_width
            )
        else:
            vision_heads = vision_width // 64
            self.visual = PromptedVisionTransformer(
                input_resolution=image_resolution,
                patch_size=vision_patch_size,
                width=vision_width,
                layers=vision_layers,
                heads=vision_heads,
                output_dim=embed_dim,
                prompt_config=self.prompt_config,
                train_bool=train_bool,
                )

        self.transformer = Transformer(
            width=transformer_width,
            layers=transformer_layers,
            heads=transformer_heads,
            attn_mask=self.build_attention_mask()
        )

        self.vocab_size = vocab_size
        self.token_embedding = nn.Embedding(vocab_size, transformer_width)
        self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
        self.ln_final = LayerNorm(transformer_width)

        self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))

        self.initialize_parameters()

    def initialize_parameters(self):
        nn.init.normal_(self.token_embedding.weight, std=0.02)
        nn.init.normal_(self.positional_embedding, std=0.01)
        # skipped because self.visual is PromptedVisionTransformer
        if isinstance(self.visual, ModifiedResNet):
            if self.visual.attnpool is not None:
                std = self.visual.attnpool.c_proj.in_features ** -0.5
                nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)

            for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
                for name, param in resnet_block.named_parameters():
                    if name.endswith("bn3.weight"):
                        nn.init.zeros_(param)
        proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
        attn_std = self.transformer.width ** -0.5
        fc_std = (2 * self.transformer.width) ** -0.5
        for block in self.transformer.resblocks:
            nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
            nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
            nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
            nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)

        if self.text_projection is not None:
            nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)

    def build_attention_mask(self):
        # lazily create causal attention mask, with full attention between the vision tokens
        # pytorch uses additive attention mask; fill with -inf
        mask = torch.empty(self.context_length, self.context_length)
        mask.fill_(float("-inf"))
        mask.triu_(1)  # zero out the lower diagonal
        return mask

    @property
    def dtype(self):
        return self.visual.conv1.weight.dtype
    
    def encode_image(self, image,layers:int=12,text_features=None,mode="test"):
        return self.visual(image.type(self.dtype),layers=layers,text_features=text_features,mode=mode)

    def encode_text(self, text):
        text_bool=True
        x = self.token_embedding(text).type(self.dtype)  # [batch_size, n_ctx, d_model]
        x = x + self.positional_embedding.type(self.dtype)
        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.transformer(x,layers=12,text_bool=text_bool,text_features=None) # always get the last layer features for text
        x = x.permute(1, 0, 2)  # LND -> NLD
        x = self.ln_final(x).type(self.dtype)

        # x.shape = [batch_size, n_ctx, transformer.width]
        x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection

        return x

    def forward(self, image, text,layer_num=12,return_logits=False,mode="train"):

        text_features = self.encode_text(text)
        patch_features = self.encode_image(image,layers=layer_num,text_features=text_features,mode=mode).squeeze(0)

        # normalized features
        patch_features = patch_features / patch_features.norm(dim=1, keepdim=True)
        text_features = text_features / text_features.norm(dim=1, keepdim=True)
        
        if return_logits:
            logit_scale = self.logit_scale.exp()
            sketch_features = patch_features[:,0,:]
            logits_sketch = logit_scale * sketch_features @ text_features.t()
            logits_text = logits_sketch.t()
            return logits_sketch,logits_text
        
        else:        
            return patch_features,text_features