Spaces:
Running
Running
File size: 25,878 Bytes
254fdf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
from collections import OrderedDict
from typing import Tuple, Union
import math
# import torchvision
import torch
import numpy as np
import torch
from torch import nn
# from torch.nn.modules.utils import _pair
from torch.nn import Dropout
from functools import reduce
from operator import mul
# from vpt.src.utils import logging
from .ca import Cross_Attention
# logger = logging.get_logger("visual_prompt")
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1):
super().__init__()
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.relu2 = nn.ReLU(inplace=True)
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu3 = nn.ReLU(inplace=True)
self.downsample = None
self.stride = stride
if stride > 1 or inplanes != planes * Bottleneck.expansion:
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
self.downsample = nn.Sequential(OrderedDict([
("-1", nn.AvgPool2d(stride)),
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
("1", nn.BatchNorm2d(planes * self.expansion))
]))
def forward(self, x: torch.Tensor):
identity = x
out = self.relu1(self.bn1(self.conv1(x)))
out = self.relu2(self.bn2(self.conv2(out)))
out = self.avgpool(out)
out = self.bn3(self.conv3(out))
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu3(out)
return out
# implement attention module for v-v self-attention
class Attention(nn.Module):
def __init__(self, out_dim, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., settings=''):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(out_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.settings = settings
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
# original self-attention for the original path
attn_ori = (q @ k.transpose(-2, -1)) * self.scale
attn_ori = attn_ori.softmax(dim=-1)
attn_ori = self.attn_drop(attn_ori)
# replace k & q by v
k = v
q = k
# resnets have only one self-attention, norm and larger scale perform better
if self.settings == 'resnet':
k = k / (k.norm(p=2, dim=-1, keepdim=True) + 1e-6)
q = k
scale = self.scale * 8
else:
scale = self.scale
# self-attention, higher temperate for resnets performs better
attn = (q @ k.transpose(-2, -1)) * scale
attn = (attn).softmax(dim=-1)
attn = self.attn_drop(attn)
x_ori = (attn_ori @ v).transpose(1, 2).reshape(B, N, C)
x = (attn @ v).transpose(1, 2).reshape(B, N, C) # clip_surgery
#x = v.transpose(1, 2).reshape(B, N, C) # mask_clip
x = self.proj_drop(self.proj(x))
x_ori = self.proj_drop(self.proj(x_ori))
return [x, x_ori]
class AttentionPool2d(nn.Module):
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
self.attn = None
self.embed_dim = embed_dim
self.num_heads = num_heads
self.output_dim = output_dim
def forward(self, x):
# reform transformer layer after init and load weights, using v only
if self.attn == None:
self.attn = Attention(self.output_dim, self.embed_dim, self.num_heads, True)
self.attn.qkv.weight = torch.nn.Parameter(torch.cat([self.v_proj.weight, self.v_proj.weight, self.v_proj.weight], 0))
self.attn.qkv.bias = torch.nn.Parameter(torch.cat([self.v_proj.bias, self.v_proj.bias, self.v_proj.bias]))
self.attn.proj.weight = self.c_proj.weight
self.attn.proj.bias = self.c_proj.bias
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
side = int((self.positional_embedding.shape[0] - 1) ** 0.5)
new_side = int((x.shape[0] - 1) ** 0.5)
# update the position embedding during inference for varied input size
if side != new_side:
new_pos = self.positional_embedding[1:, :].reshape(-1, side, side, x.shape[-1]).permute(0, 3, 1, 2)
new_pos = torch.nn.functional.interpolate(new_pos, (new_side, new_side), mode='bilinear')
new_pos = new_pos.reshape(-1, x.shape[-1], new_side * new_side).transpose(1, 2)
self.positional_embedding.data = torch.cat([self.positional_embedding[:1, :], new_pos[0]], 0)
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
x, x_ori = self.attn(x.transpose(0, 1))
# cls token from the original path, and img tokens from the new path
x[:, 0, :] = x_ori[:, 0, :]
return x
class ModifiedResNet(nn.Module):
"""
A ResNet class that is similar to torchvision's but contains the following changes:
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
- The final pooling layer is a QKV attention instead of an average pool
"""
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
super().__init__()
self.output_dim = output_dim
self.input_resolution = input_resolution
# the 3-layer stem
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(width // 2)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(width // 2)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(width)
self.relu3 = nn.ReLU(inplace=True)
self.avgpool = nn.AvgPool2d(2)
# residual layers
self._inplanes = width # this is a *mutable* variable used during construction
self.layer1 = self._make_layer(width, layers[0])
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
embed_dim = width * 32 # the ResNet feature dimension
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
def _make_layer(self, planes, blocks, stride=1):
layers = [Bottleneck(self._inplanes, planes, stride)]
self._inplanes = planes * Bottleneck.expansion
for _ in range(1, blocks):
layers.append(Bottleneck(self._inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
def stem(x):
x = self.relu1(self.bn1(self.conv1(x)))
x = self.relu2(self.bn2(self.conv2(x)))
x = self.relu3(self.bn3(self.conv3(x)))
x = self.avgpool(x)
return x
x = x.type(self.conv1.weight.dtype)
x = stem(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.attnpool(x)
# shape BNC
return x
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.clone().type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
self.attn_probs = None
self.attn_grad = None
self.attn_keys = None
def set_attn_probs(self, attn_probs):
self.attn_probs = attn_probs
def set_attn_keys(self, attn_keys):
self.attn_keys = attn_keys
def set_attn_grad(self, attn_grad):
self.attn_grad = attn_grad
def attention(self, x: torch.Tensor, attn_mask: torch.Tensor = None, mode="train"):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
if isinstance(self.attn, Attention):
x = x.transpose(0, 1)
x, x_ori = self.attn(x)
return [x.transpose(0, 1), x_ori.transpose(0, 1)]
else:
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x, attn_mask: torch.Tensor = None, mode="train"):
# dual paths for blocks deeper than "d"
if isinstance(self.attn, Attention):
if isinstance(x, list):
x, x_ori = x
x_res = self.attention(self.ln_1(x_ori))
x_res, x_ori_res = x_res
x_ori += x_ori_res
x_ori = x_ori + self.mlp(self.ln_2(x_ori))
x += x_res # skip ffn for the new path
return [x, x_ori]
# start of dual path
else:
x_res = self.attention(self.ln_1(x))
if isinstance(x_res, list):
x_res, x_ori_res = x_res
x_ori = x + x_ori_res
x_ori = x_ori + self.mlp(self.ln_2(x_ori))
x += x_res
return [x, x_ori]
# single path before "d"
else:
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, need_weights: bool = False):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for i in range(layers)])
self.ca = Cross_Attention(d_model=768)
def forward(self, x: torch.Tensor,layers=12,text_bool=False,text_features=None,mode="train"):
for idx,l in enumerate(self.resblocks):
x=l(x)
if idx+1 == layers:
if text_bool:
return x
# implement cross attention between image tokens and text tokens
x_l = x[0]
x_ori_l = x[1]
text_features = text_features.unsqueeze(0).repeat(x_l.shape[0], 1, 1)
x_l = x_l.permute(1, 0, 2)
text_features = text_features.permute(1, 0, 2)
if mode == "test":
x_l = x_l.repeat(text_features.shape[0], 1, 1)
x_l_ca = self.ca(x_l, text_features)
x_l_ca = x_l_ca.permute(1, 0, 2)
x_ori_l = x_ori_l.permute(1, 0, 2)
if mode == "test":
x_ori_l = x_ori_l.repeat(text_features.shape[0], 1, 1)
x_ori_l_ca = self.ca(x_ori_l, text_features)
x_ori_l_ca = x_ori_l_ca.permute(1, 0, 2)
return [x_l_ca, x_ori_l_ca]
class PromptedVisionTransformer(nn.Module):
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int,prompt_config:dict,train_bool:bool):
super().__init__()
self.train_bool = train_bool
self.patch_size = patch_size
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(width, layers, heads, need_weights=True)
self.attn = None
self.embed_dim = width
self.num_heads = heads
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
self.prompt_config = prompt_config
self.prompt_dropout = Dropout(self.prompt_config.DROPOUT)
num_tokens = self.prompt_config.NUM_TOKENS
self.num_tokens = num_tokens # number of prompted tokens
# if project the prompt embeddings
if self.prompt_config.PROJECT > -1:
# only for prepend / add
prompt_dim = self.prompt_config.PROJECT
self.prompt_proj = nn.Linear(
prompt_dim, 768)
nn.init.kaiming_normal_(
self.prompt_proj.weight, a=0, mode='fan_out')
else:
prompt_dim = 768
self.prompt_proj = nn.Identity()
# initiate prompt:
if self.prompt_config.INITIATION == "random":
val = math.sqrt(6. / float(3 * reduce(mul, (patch_size,patch_size), 1) + prompt_dim)) # noqa
self.prompt_embeddings = nn.Parameter(torch.zeros(
1, num_tokens, prompt_dim))
# xavier_uniform initialization
nn.init.uniform_(self.prompt_embeddings.data, -val, val)
if self.prompt_config.DEEP: # noqa
total_d_layer = 12-1 #config.transformer["num_layers"]-1
self.deep_prompt_embeddings = nn.Parameter(torch.zeros(
total_d_layer, num_tokens, prompt_dim))
# xavier_uniform initialization
nn.init.uniform_(self.deep_prompt_embeddings.data, -val, val)
else:
raise ValueError("Other initiation scheme is not supported")
if not self.train_bool:
if self.attn == None:
# apply architecture surgery on the last 6 blocks
for i in range(1, 7): # surgery 7, maskclip 2
self.attn = Attention(self.embed_dim, self.embed_dim, self.num_heads, True)
self.attn.qkv.weight.data = self.transformer.resblocks[-i].attn.in_proj_weight.clone()
self.attn.qkv.bias.data = self.transformer.resblocks[-i].attn.in_proj_bias.clone()
self.attn.proj.weight.data = self.transformer.resblocks[-i].attn.out_proj.weight.clone()
self.attn.proj.bias.data = self.transformer.resblocks[-i].attn.out_proj.bias.clone()
self.transformer.resblocks[-i].attn = self.attn
# @torch.no_grad()
def forward(self, x: torch.Tensor,layers: int = 12,text_features:torch.Tensor = None,mode:str = "test"):
if self.attn == None:
# apply architecture surgery on the last 6 blocks
for i in range(1, 7): # surgery 7, maskclip 2
self.attn = Attention(self.embed_dim, self.embed_dim, self.num_heads, True)
self.attn.qkv.weight.data = self.transformer.resblocks[-i].attn.in_proj_weight.clone()
self.attn.qkv.bias.data = self.transformer.resblocks[-i].attn.in_proj_bias.clone()
self.attn.proj.weight.data = self.transformer.resblocks[-i].attn.out_proj.weight.clone()
self.attn.proj.bias.data = self.transformer.resblocks[-i].attn.out_proj.bias.clone()
self.transformer.resblocks[-i].attn = self.attn
B = x.shape[0]
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] ,, torch.Size([B, 196, 768])
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
side = int((self.positional_embedding.shape[0] - 1) ** 0.5)
new_side = int((x.shape[1] - 1) ** 0.5)
# update the position embedding during inference for varied input size
if side != new_side:
new_pos = self.positional_embedding[1:, :].reshape(-1, side, side, x.shape[-1]).permute(0, 3, 1, 2)
new_pos = torch.nn.functional.interpolate(new_pos, (new_side, new_side), mode='bilinear')
new_pos = new_pos.reshape(-1, x.shape[-1], new_side * new_side).transpose(1, 2)
self.positional_embedding.data = torch.cat([self.positional_embedding[:1, :], new_pos[0]], 0)
pos = self.positional_embedding.to(x.dtype)
x = x + pos # add positional embedding torch.Size([B, 197, 768])
# ADD VISUAL PROMPTS HERE
if self.num_tokens > 0:
x = torch.cat((
x[:, :1, :],
self.prompt_dropout(self.prompt_proj(self.prompt_embeddings).expand(B, -1, -1)),
x[:, 1:, :]
), dim=1)
# (batch_size, cls_token + n_prompt + n_patches, hidden_dim)
x = self.ln_pre(x) # layer norm
x = x.permute(1, 0, 2) # NLD -> LND
if mode == "train":
x_multi = torch.zeros(len(layers),x.shape[1],x.shape[0],512).to(x.device)
elif mode == "test":
x_multi = torch.zeros(len(layers),text_features.shape[0],x.shape[0],512).to(x.device)
for d,layer in enumerate(layers):
x_l, x_ori_l = self.transformer(x,layers=layer,text_bool=False, text_features=text_features,mode = mode)
x_l[0, :, :] = x_ori_l[0, :, :] # clip_surgery
x_l = x_l.permute(1, 0, 2) # LND -> NLD
x_l = self.ln_post(x_l) # layer norm
x_l = x_l @ self.proj
x_multi[d] = x_l
return x_multi
class ModifiedCLIPSurgery(nn.Module):
def __init__(self,
embed_dim: int,
# vision
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
# text
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
cfg:dict,
train_bool:bool,
):
super().__init__()
if "prompt" in cfg.MODEL.TRANSFER_TYPE:
prompt_cfg = cfg.MODEL.PROMPT
else:
prompt_cfg = None
self.prompt_config = prompt_cfg
self.context_length = context_length
if isinstance(vision_layers, (tuple, list)):
vision_heads = vision_width * 32 // 64
self.visual = ModifiedResNet(
layers=vision_layers,
output_dim=embed_dim,
heads=vision_heads,
input_resolution=image_resolution,
width=vision_width
)
else:
vision_heads = vision_width // 64
self.visual = PromptedVisionTransformer(
input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim,
prompt_config=self.prompt_config,
train_bool=train_bool,
)
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask()
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
# skipped because self.visual is PromptedVisionTransformer
if isinstance(self.visual, ModifiedResNet):
if self.visual.attnpool is not None:
std = self.visual.attnpool.c_proj.in_features ** -0.5
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
for name, param in resnet_block.named_parameters():
if name.endswith("bn3.weight"):
nn.init.zeros_(param)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self):
return self.visual.conv1.weight.dtype
def encode_image(self, image,layers:int=12,text_features=None,mode="test"):
return self.visual(image.type(self.dtype),layers=layers,text_features=text_features,mode=mode)
def encode_text(self, text):
text_bool=True
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x,layers=12,text_bool=text_bool,text_features=None) # always get the last layer features for text
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x
def forward(self, image, text,layer_num=12,return_logits=False,mode="train"):
text_features = self.encode_text(text)
patch_features = self.encode_image(image,layers=layer_num,text_features=text_features,mode=mode).squeeze(0)
# normalized features
patch_features = patch_features / patch_features.norm(dim=1, keepdim=True)
text_features = text_features / text_features.norm(dim=1, keepdim=True)
if return_logits:
logit_scale = self.logit_scale.exp()
sketch_features = patch_features[:,0,:]
logits_sketch = logit_scale * sketch_features @ text_features.t()
logits_text = logits_sketch.t()
return logits_sketch,logits_text
else:
return patch_features,text_features |