File size: 4,774 Bytes
254fdf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python3

"""Distributed helpers."""

import torch
import torch.distributed as dist
_LOCAL_PROCESS_GROUP = None


def get_world_size() -> int:
    if not dist.is_available():
        return 1
    if not dist.is_initialized():
        return 1
    return dist.get_world_size()


def get_rank() -> int:
    if not dist.is_available():
        return 0
    if not dist.is_initialized():
        return 0
    return dist.get_rank()


def is_master_process(num_gpus=8):
    """
    Determines if the current process is the master process.
    """
    if torch.distributed.is_initialized():
        return dist.get_rank() % num_gpus == 0
    else:
        return True


def run(
    local_rank,
    num_proc,
    func,
    init_method,
    shard_id,
    num_shards,
    backend,
    cfg,
    args,
):
    """
    Runs a function from a child process.
    Args:
        local_rank (int): rank of the current process on the current machine.
        num_proc (int): number of processes per machine.
        func (function): function to execute on each of the process.
        init_method (string): method to initialize the distributed training.
            TCP initialization: equiring a network address reachable from all
            processes followed by the port.
            Shared file-system initialization: makes use of a file system that
            is shared and visible from all machines. The URL should start with
            file:// and contain a path to a non-existent file on a shared file
            system.
        shard_id (int): the rank of the current machine.
        num_shards (int): number of overall machines for the distributed
            training job.
        backend (string): three distributed backends ('nccl', 'gloo', 'mpi') are
            supports, each with different capabilities. Details can be found
            here:
            https://pytorch.org/docs/stable/distributed.html
        cfg (CfgNode): configs. Details can be found in
            loco/config/defaults.py
    """
    # Initialize the process group.
    # shard_id = get_rank()
    world_size = num_proc * num_shards
    rank = shard_id * num_proc + local_rank

    try:
        torch.distributed.init_process_group(
            backend=backend,
            init_method=init_method,
            world_size=world_size,
            rank=rank,
        )
    except Exception as e:
        raise e

    torch.cuda.set_device(local_rank)
    func(cfg, args)


def destroy_process_group():
    """Destroys the default process group."""
    torch.distributed.destroy_process_group()


def scaled_all_reduce(cfg, tensors):
    """Performs the scaled all_reduce operation on the provided tensors.

    The input tensors are modified in-place. Currently supports only the sum
    reduction operator. The reduced values are scaled by the inverse size of
    the process group (equivalent to cfg.NUM_GPUS).
    """
    # Queue the reductions
    reductions = []
    for tensor in tensors:
        reduction = torch.distributed.all_reduce(tensor, async_op=True)
        reductions.append(reduction)
    # Wait for reductions to finish
    for reduction in reductions:
        reduction.wait()
    # Scale the results
    for tensor in tensors:
        tensor.mul_(1.0 / cfg.NUM_GPUS / cfg.NUM_SHARDS)
    return tensors


def cat_all_gather(tensors):
    """Performs the concatenated all_gather operation on the provided tensors.
    """
    tensors_gather = [
        torch.ones_like(tensors)
        for _ in range(torch.distributed.get_world_size())
    ]
    torch.distributed.all_gather(tensors_gather, tensors, async_op=False)

    output = torch.cat(tensors_gather, dim=0)
    return output


def local_cat_all_gather(tensors):
    """Performs the concatenated all_gather operation on the provided tensors.
    """
    tensors_gather = [
        torch.ones_like(tensors)
        for _ in range(get_local_size())
    ]
    torch.distributed.all_gather(
        tensors_gather,
        tensors,
        async_op=False,
        group=_LOCAL_PROCESS_GROUP,
    )
    output = torch.cat(tensors_gather, dim=0)
    return output


def get_local_size():
    """
    Returns:
        The size of the per-machine process group,
        i.e. the number of processes per machine.
    """
    if not dist.is_available():
        return 1
    if not dist.is_initialized():
        return 1
    return dist.get_world_size(group=_LOCAL_PROCESS_GROUP)


def get_local_rank():
    """
    Returns:
        The rank of the current process within the local (per-machine) process group.
    """
    if not dist.is_available():
        return 0
    if not dist.is_initialized():
        return 0
    assert _LOCAL_PROCESS_GROUP is not None
    return dist.get_rank(group=_LOCAL_PROCESS_GROUP)