Spaces:
Running
Running
first
Browse files- app_old.py +0 -92
app_old.py
DELETED
@@ -1,92 +0,0 @@
|
|
1 |
-
|
2 |
-
import gradio as gr
|
3 |
-
from PIL import Image
|
4 |
-
import torch
|
5 |
-
from torchvision.transforms import InterpolationMode
|
6 |
-
BICUBIC = InterpolationMode.BICUBIC
|
7 |
-
from utils import setup, get_similarity_map, display_segmented_sketch
|
8 |
-
from vpt.launch import default_argument_parser
|
9 |
-
from collections import OrderedDict
|
10 |
-
import numpy as np
|
11 |
-
import matplotlib.pyplot as plt
|
12 |
-
import models
|
13 |
-
|
14 |
-
args = default_argument_parser().parse_args()
|
15 |
-
cfg = setup(args)
|
16 |
-
|
17 |
-
device ="cpu"# "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
-
Ours, preprocess = models.load("CS-ViT-B/16", device=device,cfg=cfg,train_bool=False)
|
19 |
-
state_dict = torch.load("sketch_seg_best_miou.pth", map_location=device)
|
20 |
-
|
21 |
-
# Trained on 2 gpus so we need to remove the prefix "module." to test it on a single GPU
|
22 |
-
new_state_dict = OrderedDict()
|
23 |
-
for k, v in state_dict.items():
|
24 |
-
name = k[7:] # remove `module.`
|
25 |
-
new_state_dict[name] = v
|
26 |
-
Ours.load_state_dict(new_state_dict)
|
27 |
-
Ours.eval()
|
28 |
-
print("Model loaded successfully")
|
29 |
-
|
30 |
-
def run(sketch, caption, threshold):
|
31 |
-
|
32 |
-
# set the condidate classes here
|
33 |
-
classes = [caption]
|
34 |
-
|
35 |
-
colors = plt.get_cmap("tab10").colors
|
36 |
-
classes_colors = colors[2:len(classes)+2]
|
37 |
-
|
38 |
-
sketch = sketch['composite']
|
39 |
-
sketch = np.array(sketch)
|
40 |
-
|
41 |
-
pil_img = Image.fromarray(sketch).convert('RGB')
|
42 |
-
sketch_tensor = preprocess(pil_img).unsqueeze(0).to(device)
|
43 |
-
|
44 |
-
with torch.no_grad():
|
45 |
-
text_features = models.encode_text_with_prompt_ensemble(Ours, classes, device,no_module=True)
|
46 |
-
redundant_features = models.encode_text_with_prompt_ensemble(Ours, [""], device,no_module=True)
|
47 |
-
|
48 |
-
num_of_tokens = 3
|
49 |
-
with torch.no_grad():
|
50 |
-
sketch_features = Ours.encode_image(sketch_tensor,layers=[12],text_features=text_features-redundant_features,mode="test").squeeze(0)
|
51 |
-
sketch_features = sketch_features / sketch_features.norm(dim=1, keepdim=True)
|
52 |
-
similarity = sketch_features @ (text_features - redundant_features).t()
|
53 |
-
patches_similarity = similarity[0, num_of_tokens +1:, :]
|
54 |
-
pixel_similarity = get_similarity_map(patches_similarity.unsqueeze(0),pil_img.size).cpu()
|
55 |
-
# visualize_attention_maps_with_tokens(pixel_similarity, classes)
|
56 |
-
pixel_similarity[pixel_similarity<threshold] = 0
|
57 |
-
pixel_similarity_array = pixel_similarity.cpu().numpy().transpose(2,0,1)
|
58 |
-
|
59 |
-
display_segmented_sketch(pixel_similarity_array,sketch,classes,classes_colors,live=True)
|
60 |
-
|
61 |
-
rgb_image = Image.open('output.png')
|
62 |
-
|
63 |
-
return rgb_image
|
64 |
-
|
65 |
-
|
66 |
-
css=".gradio-container {background-color: black}"
|
67 |
-
|
68 |
-
demo = gr.Interface(
|
69 |
-
fn=run,
|
70 |
-
# js=js,
|
71 |
-
css=css,
|
72 |
-
theme="gstaff/sketch", #xkcd
|
73 |
-
description='Upload a skecth and find objects.'\
|
74 |
-
' Check run examples down the page.',
|
75 |
-
inputs=[
|
76 |
-
gr.ImageEditor(
|
77 |
-
label="Sketch", type="pil",sources="upload"),
|
78 |
-
|
79 |
-
gr.Textbox(label="Caption", placeholder="Describe which objects to segment"),
|
80 |
-
gr.Slider(label="Threshold", value=0.6, step=0.05, minimum=0, maximum=1),
|
81 |
-
],
|
82 |
-
outputs=[gr.Image(type="pil", label="Segmented Sketch") ],
|
83 |
-
allow_flagging=False,
|
84 |
-
examples=[
|
85 |
-
['demo/sketch_1.png', 'giraffe standing', 0.6],
|
86 |
-
['demo/sketch_2.png', 'tree', 0.6],
|
87 |
-
['demo/sketch_3.png', 'person', 0.6],
|
88 |
-
],
|
89 |
-
title="Scene Sketch Semantic Segmentation")
|
90 |
-
|
91 |
-
if __name__ == "__main__":
|
92 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|