import gradio as gr import json import requests import pandas as pd def update_task_options(framework): config = { "Custom":["Custom"], "Diffusers":["Text To Image"], "Transformers":[ "Text Classification", "Zero Shot Classification", "Token Classifiation", "Question Answering", "Fill Mask", "Summarization", "Translation", "Text to Text Generation", "Text Generation", "Feature Extraction", "Image Classification", "Automatic Speech Recognition", "Audio Classification", "Object Detection", "Image Segmentation", "Table Question Answering", "Conversational", "Visual Question Answering", "Zero Shot Image Classification"] } return gr.Dropdown.update( choices=config[framework], value=config[framework][0] if len(config[framework]) > 0 else None ) def update_regions(provider): available_regions = [] headers = { "Content-Type": "application/json", } endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region" response = requests.get(endpoint_url, headers=headers) for region in response.json()['items']: if region['status'] == 'available': available_regions.append(f"{region['region']}/{region['label']}") return gr.Dropdown.update( choices=available_regions, value=available_regions[0] if len(available_regions) > 0 else None ) def update_compute_options(provider, region): region = region.split("/")[0] available_compute_choices = [] headers = { "Content-Type": "application/json", } endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region/{region}/compute" response = requests.get(endpoint_url, headers=headers) for compute in response.json()['items']: if compute['status'] == 'available': accelerator = compute['accelerator'] numAccelerators = compute['numAccelerators'] memoryGb = compute['memoryGb'].replace("Gi", "GB") architecture = compute['architecture'] instanceType = compute['instanceType'] type = f"{numAccelerators}vCPU {memoryGb} · {architecture}" if accelerator == "cpu" else f"{numAccelerators}x {architecture}" available_compute_choices.append( f"{compute['accelerator'].upper()} [{compute['instanceSize']}] · {type} · {instanceType}" ) return gr.Dropdown.update( choices=available_compute_choices, value=available_compute_choices[0] if len(available_compute_choices) > 0 else None ) def submit( hf_token_input, endpoint_name_input, provider_selector, region_selector, repository_selector, revision_selector, task_selector, framework_selector, compute_selector, min_node_selector, max_node_selector, security_selector ): compute_resources = compute_selector.split("·") accelerator = compute_resources[0][:3].strip() size_l_index = compute_resources[0].index("[") - 1 size_r_index = compute_resources[0].index("]") size = compute_resources[0][size_l_index : size_r_index].strip() type = compute_resources[-1].strip() payload = { "accountId": repository_selector.split("/")[0], "compute": { "accelerator": accelerator.lower(), "instanceSize": size[1:], "instanceType": type, "scaling": { "maxReplica": int(max_node_selector), "minReplica": int(min_node_selector) } }, "model": { "framework": "custom", "image": { "huggingface": {} }, "repository": repository_selector.lower(), "revision": revision_selector, "task": task_selector.lower() }, "name": endpoint_name_input.strip(), "provider": { "region": region_selector.split("/")[0].lower(), "vendor": provider_selector.lower() }, "type": security_selector.lower() } payload = json.dumps(payload) headers = { "Authorization": f"Bearer {hf_token_input.strip()}", "Content-Type": "application/json", } endpoint_url = f"https://api.endpoints.huggingface.cloud/endpoint" print(f"Endpoint: {endpoint_url}") response = requests.post(endpoint_url, headers=headers, data=payload) if response.status_code == 400: return f"{response.text}. Malformed data in {payload}" elif response.status_code == 401: return "Invalid token" elif response.status_code == 409: return f"Error: {response.text}" elif response.status_code == 202: return f"Endpoint {endpoint_name_input} created successfully on {provider_selector.lower()} using {repository_selector.lower()}@{revision_selector}. \n Please check out the progress at https://ui.endpoints.huggingface.co/endpoints." else: return f"Something went wrong!, StatusCode:{response.status_code}, Error: {response.text}" def delete_endpoint( hf_token_input, endpoint_name_input ): response = requests.delete( f"https://api.endpoints.huggingface.cloud/endpoint/{endpoint_name_input}", headers = { "Authorization": f"Bearer {hf_token_input.strip()}", "Content-Type": "application/json", } ) if response.status_code == 401: return "Invalid token" elif response.status_code == 404: return f"Error: {response.text}" elif response.status_code == 202: return f"Endpoint {endpoint_name_input} deleted successfully." else: return f"Something went wrong!, StatusCode:{response.status_code}, Error: {response.text}" def get_all_endpoints( hf_token_input, method, ): response = requests.get( f"https://api.endpoints.huggingface.cloud/endpoint", headers = { "Authorization": f"Bearer {hf_token_input.strip()}", "Content-Type": "application/json", }) if response.status_code == 401: if method == "info": return gr.DataFrame.update( value=[["Invalid token", "Invalid token", "Invalid token", "Invalid token", "Invalid token", "Invalid token", "Invalid token", "Invalid token", "Invalid token"]], ) else: return gr.Dropdown.update( value="Invalid token or No endpoints found!", ) elif response.status_code == 200: endpoints_json = response.json() if method == "info": endpoints_df = pd.DataFrame(columns=["name", "model", "provider", "compute", "status", "minReplica", "maxReplica", "createdAt", "updatedAt"]) for endpoint in endpoints_json["items"]: endpoints_df = endpoints_df.append({ "name": endpoint["name"], "model": endpoint["model"]["repository"] + "@" + endpoint["model"]["revision"], "provider": endpoint["provider"]["vendor"] + "/" + endpoint["provider"]["region"], "compute": endpoint["compute"]["instanceType"] + "·" + endpoint["compute"]["instanceSize"] + " [" + endpoint["compute"]["accelerator"] + "]", "status": endpoint["status"]["state"], "minReplica": endpoint["compute"]["scaling"]["minReplica"], "maxReplica": endpoint["compute"]["scaling"]["maxReplica"], "createdAt": endpoint["status"]["createdAt"], "updatedAt": endpoint["status"]["updatedAt"], }, ignore_index=True) endpoints_df.columns = ["Endpoint Name", "Model Name @ Revision", "Provider", "Instance Type", "Status", "Min Replica", "Max Replica", "Created At", "Updated At"] return gr.DataFrame.update( value=endpoints_df, ) else: return gr.Dropdown.update( choices=[endpoint["name"] for endpoint in endpoints_json["items"]], value=endpoints_json["items"][0]["name"], ) def update_endpoint( hf_token_input, endpoint_name_input, min_node_selector, max_node_selector, instance_type, ): payload ={ "compute": { "instanceSize": instance_type.split("·")[0].split("[")[1].split("]")[0], "instanceType": instance_type.split("·")[-1].strip(), "scaling": { "maxReplica": int(max_node_selector), "minReplica": int(min_node_selector) } }} payload = json.dumps(payload) response = requests.put( f"https://api.endpoints.huggingface.cloud/endpoint/{endpoint_name_input}", headers = { "Authorization": f"Bearer {hf_token_input.strip()}", "Content-Type": "application/json", }, data=payload, ) if response.status_code == 401: return "Invalid token" elif response.status_code == 404: return f"Error: {response.text}" elif response.status_code == 202: return f"Endpoint {endpoint_name_input} updated successfully." else: return f"Something went wrong!, StatusCode:{response.status_code}, Error: {response.text}" def get_endpoint_logs( hf_token_input, endpoint_name_input, ): response = requests.get( f"https://api.endpoints.huggingface.cloud/endpoint/{endpoint_name_input}/logs", headers = { "Authorization": f"Bearer {hf_token_input.strip()}", "Content-Type": "application/json", }) if response.status_code == 401: return "Invalid token or No logs found!" elif response.status_code == 200: return response.text elif response.status_code == 404: return f"Error: {response.text}" with gr.Blocks() as interface: gr.Markdown(""" #### Your 🤗 Access Token (Required) """) hf_token_input = gr.Textbox( show_label=False, type="password" ) # Get All Endpoints Info with gr.Tab("Info"): gr.Markdown(""" ### All Deployed Endpoints """) endpoints_table = gr.Dataframe( headers=["Endpoint Name", "Model Name", "Provider", "Instance Type", "Status", "Min Replica", "Max Replica", "Created At", "Updated At"], col_count=(9, "fixed"), ) endpoint_info_button = gr.Button(value="Get Info") # Deploy Endpoint with gr.Tab("Deploy Endpoint"): gr.Markdown( """ ###
(Deploy Your Model on 🤗 Endpoint)
""") gr.Markdown(""" #### Endpoint Name """) endpoint_name_input = gr.Textbox( show_label=False ) with gr.Row(): gr.Markdown(""" #### Cloud Provider """) gr.Markdown(""" #### Cloud Region """) with gr.Row(): provider_selector = gr.Dropdown( choices=["aws", "azure"], value="", interactive=True, show_label=False, ) region_selector = gr.Dropdown( [], value="", interactive=True, show_label=False, ) with gr.Row(): gr.Markdown(""" #### Target Model e.g (openai/whisper-tiny) """) gr.Markdown(""" #### Branch commit hash e.g (ada5a5d516772e41f9aeb0f984df6ecc4620001f) """) with gr.Row(): repository_selector = gr.Textbox( value="", interactive=True, show_label=False, ) revision_selector = gr.Textbox( value="", interactive=True, show_label=False, ) with gr.Row(): gr.Markdown(""" #### Task """) gr.Markdown(""" #### Framework """) with gr.Row(): framework_selector = gr.Dropdown( choices = ["Custom", "Diffusers", "Transformers"], value="", interactive=True, show_label=False, ) task_selector = gr.Dropdown( [], value="", interactive=True, show_label=False, ) gr.Markdown(""" #### Select Compute Instance Type """) compute_selector = gr.Dropdown( [], value="", interactive=True, show_label=False, ) with gr.Row(): gr.Markdown(""" #### Min Number of Nodes """) gr.Markdown(""" #### Max Number of Nodes """) gr.Markdown(""" #### Security Level """) with gr.Row(): min_node_selector = gr.Number( value=1, interactive=True, show_label=False, ) max_node_selector = gr.Number( value=1, interactive=True, show_label=False, ) security_selector = gr.Radio( choices=["Protected", "Public"], value="Protected", interactive=True, show_label=False, ) submit_button = gr.Button( value="Submit", ) status_txt = gr.Textbox( value="status", interactive=False ) # Update Endpoint with gr.Tab("Update Endpoint"): gr.Markdown(""" ###
(Update 🔁 Endpoint)
""") update_endpoint_info_button = gr.Button(value="Load Endpoints 🔃") with gr.Row(): gr.Markdown(""" #### Cloud Provider """) gr.Markdown(""" #### Cloud Region """) with gr.Row(): update_provider_selector = gr.Dropdown( choices=["aws", "azure"], value="", interactive=True, show_label=False, ) update_region_selector = gr.Dropdown( [], value="", interactive=True, show_label=False, ) with gr.Row(): gr.Markdown(""" #### Endpoint Name """) gr.Markdown(""" #### Instance Type """) with gr.Row(): update_endpoint_name_input = gr.Dropdown( [], value="", show_label=False ) update_compute_selector = gr.Dropdown( [], value="", interactive=True, show_label=False, ) with gr.Row(): gr.Markdown(""" #### Min Number of Nodes """) gr.Markdown(""" #### Max Number of Nodes """) with gr.Row(): update_min_node_input = gr.Number( value=1, interactive=True, show_label=False, ) update_max_node_input = gr.Number( value=1, interactive=True, show_label=False, ) update_button = gr.Button( value="Update", ) update_status_txt = gr.Textbox( value="status", interactive=False ) # Delete Endpoint with gr.Tab("Delete Endpoint"): gr.Markdown(""" ###
(Delete 🗑️ Endpoint)
""") delete_endpoint_info_button = gr.Button(value="Load Endpoints 🔃") gr.Markdown(""" #### Endpoint Name """) delete_endpoint_name_input = gr.Dropdown( [], value="", show_label=False ) delete_button = gr.Button( value="Delete", ) delete_status_txt = gr.Textbox( value="status", interactive=False ) # Endpoint logs with gr.Tab("Endpoint Logs"): gr.Markdown(""" ###
(Endpoint 📖 Logs)
""") endpoint_logs_load_button = gr.Button(value="Load Endpoints 🔃") gr.Markdown(""" #### Endpoint Name """) endpoint_logs_selector = gr.Dropdown( [], value="", show_label=False ) endpoint_logs = gr.Textbox( value="", interactive=False ) endpoint_logs_button = gr.Button(value="Get Logs") # Pricing Table with gr.Tab("Pricing Table"): gr.Markdown(""" ###
(Instance Pricing Table)
#### Pricing Table(CPU) - 2023/2/22 """) gr.Dataframe( headers=["provider", "size", "$/h", "vCPUs", "Memory", "Architecture"], datatype=["str", "str", "str", "number", "str", "str"], row_count=8, col_count=(6, "fixed"), value=[ ["aws", "small", "$0.06", 1, "2GB", "Intel Xeon - Ice Lake"], ["aws", "medium", "$0.12", 2, "4GB", "Intel Xeon - Ice Lake"], ["aws", "large", "$0.24", 4, "8GB", "Intel Xeon - Ice Lake"], ["aws", "xlarge", "$0.48", 8, "16GB", "Intel Xeon - Ice Lake"], ["azure", "small", "$0.06", 1, "2GB", "Intel Xeon"], ["azure", "medium", "$0.12", 2, "4GB", "Intel Xeon"], ["azure", "large", "$0.24", 4, "8GB", "Intel Xeon"], ["azure", "xlarge", "$0.48", 8, "16GB", "Intel Xeon"], ] ) gr.Markdown(""" #### Pricing Table(GPU) - 2023/2/22 """) gr.Dataframe( headers=["provider", "size", "$/h", "GPUs", "Memory", "Architecture"], datatype=["str", "str", "str", "number", "str", "str"], row_count=6, col_count=(6, "fixed"), value=[ ["aws", "small", "$0.60", 1, "14GB", "NVIDIA T4"], ["aws", "medium", "$1.30", 1, "24GB", "NVIDIA A10G"], ["aws", "large", "$4.50", 4, "56GB", "NVIDIA T4"], ["aws", "xlarge", "$6.50", 1, "80GB", "NVIDIA A100"], ["aws", "xxlarge", "$7.00", 4, "96GB", "NVIDIA A10G"], ["aws", "xxxlarge", "$45.0", 8, "640GB", "NVIDIA A100"], ] ) # Info Tab Events endpoint_info_button.click( get_all_endpoints, inputs=[hf_token_input, gr.TextArea(value="info", interactive=False, visible=False)], outputs=endpoints_table ) # Deploy Tab Events framework_selector.change(update_task_options, inputs=framework_selector, outputs=task_selector) provider_selector.change(update_regions, inputs=provider_selector, outputs=region_selector) region_selector.change(update_compute_options, inputs=[provider_selector, region_selector], outputs=compute_selector) submit_button.click( submit, inputs=[ hf_token_input, endpoint_name_input, provider_selector, region_selector, repository_selector, revision_selector, task_selector, framework_selector, compute_selector, min_node_selector, max_node_selector, security_selector], outputs=status_txt) # Update Tab Events update_endpoint_info_button.click( get_all_endpoints, inputs=[hf_token_input, gr.TextArea(value="update", interactive=False, visible=False)], outputs=update_endpoint_name_input ) update_provider_selector.change(update_regions, inputs=update_provider_selector, outputs=update_region_selector) update_region_selector.change(update_compute_options, inputs=[update_provider_selector, update_region_selector], outputs=update_compute_selector) update_button.click( update_endpoint, inputs=[ hf_token_input, update_endpoint_name_input, update_min_node_input, update_max_node_input, update_compute_selector ], outputs=update_status_txt ) # Delete Tab Events delete_endpoint_info_button.click( get_all_endpoints, inputs=[hf_token_input, gr.TextArea(value="delete", interactive=False, visible=False)], outputs=delete_endpoint_name_input ) delete_button.click( delete_endpoint, inputs=[ hf_token_input, delete_endpoint_name_input ], outputs=delete_status_txt ) # Endpoint Logs Tab Events endpoint_logs_load_button.click( get_all_endpoints, inputs=[hf_token_input, gr.TextArea(value="logs", interactive=False, visible=False)], outputs=endpoint_logs_selector ) endpoint_logs_button.click( get_endpoint_logs, inputs=[ hf_token_input, endpoint_logs_selector ], outputs=endpoint_logs ) interface.launch()