File size: 8,192 Bytes
bf481cc
 
 
 
 
 
 
 
 
 
 
 
 
 
6879770
bf481cc
6879770
 
 
 
bf481cc
 
 
 
 
 
 
6879770
 
 
 
 
 
bf481cc
6879770
 
bf481cc
 
 
 
27af9b9
 
 
 
 
 
 
 
 
 
bf481cc
 
 
 
bed6951
bf481cc
 
bed6951
bf481cc
 
 
 
bed6951
bf481cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bed6951
 
 
 
 
 
 
 
bf481cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bed6951
 
bf481cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bed6951
bf481cc
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import cv2
import os
import torch
import numpy as np
from PIL import Image
import supervision as sv
from tqdm import tqdm
from utils.video import generate_unique_name, create_directory, delete_directory
from utils.florence import load_florence_model, run_florence_inference, FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
from utils.sam import load_sam_image_model, load_sam_video_model, run_sam_inference

class VideoProcessor:
    def __init__(self, device=None):
        self.device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.autocast = None

        self.florence_model = None
        self.florence_processor = None
        self.sam_image_model = None
        self.sam_video_model = None

        # Set up mask annotator with a white color palette
        self.mask_annotator = sv.MaskAnnotator(
            color=sv.ColorPalette.from_hex(["#FFFFFF"]),
            color_lookup=sv.ColorLookup.INDEX
        )

    def _load_models(self):
        # Load models
        self.florence_model, self.florence_processor = load_florence_model(device=self.device)
        self.sam_image_model = load_sam_image_model(device=self.device)
        self.sam_video_model = load_sam_video_model(device=self.device)

    def _enable_mixed_precision(self):
        self.autocast = torch.autocast(device_type=self.device.type, dtype=torch.bfloat16)
        self.autocast.__enter__()
        if torch.cuda.is_available() and torch.cuda.get_device_properties(0).major >= 8:
            torch.backends.cuda.matmul.allow_tf32 = True
            torch.backends.cudnn.allow_tf32 = True

    def _reset_mixed_precision(self):
        # Exit the autocast context
        self.autocast.__exit__(None, None, None)
        
        # Reset CUDA settings
        if torch.cuda.is_available():
            torch.backends.cuda.matmul.allow_tf32 = False
            torch.backends.cudnn.allow_tf32 = False
            torch.cuda.empty_cache()  # Clear the CUDA cache

    def process_video(self, video_path, scale_factor, prompt):
        self.scale_factor = scale_factor

        # Process video based on the prompt
        output_video_path, session_path, input_frames_dir, output_directory_path = self._process_prompt(video_path, prompt)

        # Create frames from the output video
        fps = self._create_frames(output_video_path, output_directory_path)
        
        # Delete the output video
        os.remove(output_video_path)

        return session_path, fps, input_frames_dir, output_directory_path

    def _create_frames(self, video_path, output_dir):
        create_directory(output_dir)
        # get the video frame width and height
        cap = cv2.VideoCapture(video_path)
        frame_width = int(cap.get(3))
        frame_height = int(cap.get(4))
        fps = cap.get(cv2.CAP_PROP_FPS)
        # open the video file
        cap = cv2.VideoCapture(video_path)

        # Now save all the frames to output_frames folder
        count = 0
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            frame = cv2.resize(frame, (frame_width, frame_height))
            cv2.imwrite(f"{output_dir}/frame_{count:04d}.jpg", frame)
            count += 1
        return fps

    def _process_prompt(self, video_path, prompt):
        # Process the first frame with the prompt using the loaded models
        frame_generator = sv.get_video_frames_generator(video_path)
        frame = next(frame_generator)
        frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        
        texts = [p.strip() for p in prompt.split(",")]
        detections_list = []

        for text in texts:
            _, result = run_florence_inference(
                model=self.florence_model,
                processor=self.florence_processor,
                device=self.device,
                image=frame,
                task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
                text=text
            )
            detections = sv.Detections.from_lmm(
                lmm=sv.LMM.FLORENCE_2,
                result=result,
                resolution_wh=frame.size
            )
            detections = run_sam_inference(self.sam_image_model, frame, detections)
            detections_list.append(detections)

        # Merge detections from all prompts
        detections = sv.Detections.merge(detections_list)
        detections = run_sam_inference(self.sam_image_model, frame, detections)

        # Check if any objects were detected
        if len(detections.mask) == 0:
            raise ValueError(f"No objects of class {', '.join(texts)} found in the first frame of the video.")

        # Generate unique name for video processing
        name = generate_unique_name()
        # session_path = os.path.join("tmp", name)
        # create_directory(session_path)
        # frame_directory_path = os.path.join(session_path, "input_frames")
        # create_directory(frame_directory_path)
        import tempfile
        session_path = tempfile.mkdtemp(prefix="video_processing_")
        frame_directory_path = tempfile.mkdtemp(prefix="input_frames_", dir=session_path)
        output_directory_path = tempfile.mkdtemp(prefix="output_frames_", dir=session_path)

        frames_sink = sv.ImageSink(
            target_dir_path=frame_directory_path,
            image_name_pattern="{:05d}.jpeg"
        )

        # Get video info and scale
        video_info = sv.VideoInfo.from_video_path(video_path)
        video_info.width = int(video_info.width * self.scale_factor)
        video_info.height = int(video_info.height * self.scale_factor)

        # Split video into frames
        frames_generator = sv.get_video_frames_generator(video_path)
        with frames_sink:
            for frame in tqdm(frames_generator, total=video_info.total_frames, desc="Splitting video into frames"):
                frame = sv.scale_image(frame, self.scale_factor)
                frames_sink.save_image(frame)

        # Initialize SAM video model state
        inference_state = self.sam_video_model.init_state(
            video_path=frame_directory_path,
            device=self.device
        )

        # Add masks to inference state
        for mask_index, mask in enumerate(detections.mask):
            _, _, _ = self.sam_video_model.add_new_mask(
                inference_state=inference_state,
                frame_idx=0,
                obj_id=mask_index,
                mask=mask
            )

        # Create output video path
        # output_video_path = os.path.join("tmp", f"{name}.mp4")
        output_video_path = os.path.join(session_path, f"{name}.mp4")
        frames_generator = sv.get_video_frames_generator(video_path)
        masks_generator = self.sam_video_model.propagate_in_video(inference_state)

        # Process and annotate each frame
        with sv.VideoSink(output_video_path, video_info=video_info) as sink:
            for frame, (_, tracker_ids, mask_logits) in zip(frames_generator, masks_generator):
                frame = sv.scale_image(frame, self.scale_factor)
                masks = (mask_logits > 0.0).cpu().numpy().astype(bool)
                if len(masks.shape) == 4:
                    masks = np.squeeze(masks, axis=1)

                detections = sv.Detections(
                    xyxy=sv.mask_to_xyxy(masks=masks),
                    mask=masks,
                    class_id=np.array(tracker_ids)
                )

                annotated_frame = frame.copy()

                annotated_frame[:, :, :] = 0
                
                annotated_frame = self.mask_annotator.annotate(
                    scene=annotated_frame, detections=detections
                )
                annotated_frame = (annotated_frame > 0).astype(np.uint8) * 255
                sink.write_frame(annotated_frame)

        return output_video_path, session_path, frame_directory_path, output_directory_path

#Example usage
# output_video = video_processor.process_video(
#     video_path="videos/clip-07-camera-2.mp4", 
#     scale_factor=0.5, 
#     prompt="players, basketball, rim, players shadow"
# )
# print(f"Processed video saved at: {output_video}")