File size: 12,779 Bytes
bf481cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bed6951
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
from inference_propainter import *

global fix_flow_complete
global fix_raft
global model
global device

device = get_device()
print(f'Running on device: {device}')
##############################################
# set up RAFT and flow competition model
##############################################
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'raft-things.pth'), 
                                model_dir='weights', progress=True, file_name=None)
fix_raft = RAFT_bi(ckpt_path, device)

ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'recurrent_flow_completion.pth'), 
                                model_dir='weights', progress=True, file_name=None)
fix_flow_complete = RecurrentFlowCompleteNet(ckpt_path)
for p in fix_flow_complete.parameters():
    p.requires_grad = False
fix_flow_complete.to(device)
fix_flow_complete.eval()


##############################################
# set up ProPainter model
##############################################
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'ProPainter.pth'), 
                                model_dir='weights', progress=True, file_name=None)
model = InpaintGenerator(model_path=ckpt_path).to(device)
model.eval()

def process_video(
    video='inputs/object_removal/bmx-trees',
    mask='inputs/object_removal/bmx-trees_mask',
    output='results',
    resize_ratio=1.0,
    height=-1,
    width=-1,
    mask_dilation=4,
    ref_stride=10,
    neighbor_length=10,
    subvideo_length=80,
    raft_iter=20,
    mode='video_inpainting',
    scale_h=1.0,
    scale_w=1.2,
    save_fps=24,
    save_frames=False,
    fp16=False
):
    global fix_flow_complete
    global fix_raft
    global model
    global device
    
    # Use fp16 precision during inference to reduce running memory cost
    use_half = True if fp16 else False 
    if device == torch.device('cpu'):
        use_half = False

    frames, fps, size, video_name = read_frame_from_videos(video)
    if not width == -1 and not height == -1:
        size = (width, height)
    if not resize_ratio == 1.0:
        size = (int(resize_ratio * size[0]), int(resize_ratio * size[1]))

    frames, size, out_size = resize_frames(frames, size)
    
    fps = save_fps if fps is None else fps
    save_root = os.path.join(output, video_name)
    if not os.path.exists(save_root):
        os.makedirs(save_root, exist_ok=True)

    if mode == 'video_inpainting':
        frames_len = len(frames)
        flow_masks, masks_dilated = read_mask(mask, frames_len, size, 
                                              flow_mask_dilates=mask_dilation,
                                              mask_dilates=mask_dilation)
        w, h = size
    elif mode == 'video_outpainting':
        assert scale_h is not None and scale_w is not None, 'Please provide a outpainting scale (s_h, s_w).'
        frames, flow_masks, masks_dilated, size = extrapolation(frames, (scale_h, scale_w))
        w, h = size
    else:
        raise NotImplementedError
    
    # for saving the masked frames or video
    masked_frame_for_save = []
    for i in range(len(frames)):
        mask_ = np.expand_dims(np.array(masks_dilated[i]),2).repeat(3, axis=2)/255.
        img = np.array(frames[i])
        green = np.zeros([h, w, 3]) 
        green[:,:,1] = 255
        alpha = 0.6
        # alpha = 1.0
        fuse_img = (1-alpha)*img + alpha*green
        fuse_img = mask_ * fuse_img + (1-mask_)*img
        masked_frame_for_save.append(fuse_img.astype(np.uint8))

    frames_inp = [np.array(f).astype(np.uint8) for f in frames]
    frames = to_tensors()(frames).unsqueeze(0) * 2 - 1    
    flow_masks = to_tensors()(flow_masks).unsqueeze(0)
    masks_dilated = to_tensors()(masks_dilated).unsqueeze(0)
    frames, flow_masks, masks_dilated = frames.to(device), flow_masks.to(device), masks_dilated.to(device)
    
    ##############################################
    # ProPainter inference
    ##############################################
    video_length = frames.size(1)
    print(f'\nProcessing: {video_name} [{video_length} frames]...')
    with torch.no_grad():
        # ---- compute flow ----
        if frames.size(-1) <= 640: 
            short_clip_len = 12
        elif frames.size(-1) <= 720: 
            short_clip_len = 8
        elif frames.size(-1) <= 1280:
            short_clip_len = 4
        else:
            short_clip_len = 2
        
        # use fp32 for RAFT
        if frames.size(1) > short_clip_len:
            gt_flows_f_list, gt_flows_b_list = [], []
            for f in range(0, video_length, short_clip_len):
                end_f = min(video_length, f + short_clip_len)
                if f == 0:
                    flows_f, flows_b = fix_raft(frames[:,f:end_f], iters=raft_iter)
                else:
                    flows_f, flows_b = fix_raft(frames[:,f-1:end_f], iters=raft_iter)
                
                gt_flows_f_list.append(flows_f)
                gt_flows_b_list.append(flows_b)
                torch.cuda.empty_cache()
                
            gt_flows_f = torch.cat(gt_flows_f_list, dim=1)
            gt_flows_b = torch.cat(gt_flows_b_list, dim=1)
            gt_flows_bi = (gt_flows_f, gt_flows_b)
        else:
            gt_flows_bi = fix_raft(frames, iters=raft_iter)
            torch.cuda.empty_cache()


        if use_half:
            frames, flow_masks, masks_dilated = frames.half(), flow_masks.half(), masks_dilated.half()
            gt_flows_bi = (gt_flows_bi[0].half(), gt_flows_bi[1].half())
            fix_flow_complete = fix_flow_complete.half()
            model = model.half()

        
        # ---- complete flow ----
        flow_length = gt_flows_bi[0].size(1)
        if flow_length > subvideo_length:
            pred_flows_f, pred_flows_b = [], []
            pad_len = 5
            for f in range(0, flow_length, subvideo_length):
                s_f = max(0, f - pad_len)
                e_f = min(flow_length, f + subvideo_length + pad_len)
                pad_len_s = max(0, f) - s_f
                pad_len_e = e_f - min(flow_length, f + subvideo_length)
                pred_flows_bi_sub, _ = fix_flow_complete.forward_bidirect_flow(
                    (gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]), 
                    flow_masks[:, s_f:e_f+1])
                pred_flows_bi_sub = fix_flow_complete.combine_flow(
                    (gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]), 
                    pred_flows_bi_sub, 
                    flow_masks[:, s_f:e_f+1])

                pred_flows_f.append(pred_flows_bi_sub[0][:, pad_len_s:e_f-s_f-pad_len_e])
                pred_flows_b.append(pred_flows_bi_sub[1][:, pad_len_s:e_f-s_f-pad_len_e])
                torch.cuda.empty_cache()
                
            pred_flows_f = torch.cat(pred_flows_f, dim=1)
            pred_flows_b = torch.cat(pred_flows_b, dim=1)
            pred_flows_bi = (pred_flows_f, pred_flows_b)
        else:
            pred_flows_bi, _ = fix_flow_complete.forward_bidirect_flow(gt_flows_bi, flow_masks)
            pred_flows_bi = fix_flow_complete.combine_flow(gt_flows_bi, pred_flows_bi, flow_masks)
            torch.cuda.empty_cache()
            

        # ---- image propagation ----
        masked_frames = frames * (1 - masks_dilated)
        subvideo_length_img_prop = min(100, subvideo_length) # ensure a minimum of 100 frames for image propagation
        if video_length > subvideo_length_img_prop:
            updated_frames, updated_masks = [], []
            pad_len = 10
            for f in range(0, video_length, subvideo_length_img_prop):
                s_f = max(0, f - pad_len)
                e_f = min(video_length, f + subvideo_length_img_prop + pad_len)
                pad_len_s = max(0, f) - s_f
                pad_len_e = e_f - min(video_length, f + subvideo_length_img_prop)

                b, t, _, _, _ = masks_dilated[:, s_f:e_f].size()
                pred_flows_bi_sub = (pred_flows_bi[0][:, s_f:e_f-1], pred_flows_bi[1][:, s_f:e_f-1])
                prop_imgs_sub, updated_local_masks_sub = model.img_propagation(masked_frames[:, s_f:e_f], 
                                                                       pred_flows_bi_sub, 
                                                                       masks_dilated[:, s_f:e_f], 
                                                                       'nearest')
                updated_frames_sub = frames[:, s_f:e_f] * (1 - masks_dilated[:, s_f:e_f]) + \
                                    prop_imgs_sub.view(b, t, 3, h, w) * masks_dilated[:, s_f:e_f]
                updated_masks_sub = updated_local_masks_sub.view(b, t, 1, h, w)
                
                updated_frames.append(updated_frames_sub[:, pad_len_s:e_f-s_f-pad_len_e])
                updated_masks.append(updated_masks_sub[:, pad_len_s:e_f-s_f-pad_len_e])
                torch.cuda.empty_cache()
                
            updated_frames = torch.cat(updated_frames, dim=1)
            updated_masks = torch.cat(updated_masks, dim=1)
        else:
            b, t, _, _, _ = masks_dilated.size()
            prop_imgs, updated_local_masks = model.img_propagation(masked_frames, pred_flows_bi, masks_dilated, 'nearest')
            updated_frames = frames * (1 - masks_dilated) + prop_imgs.view(b, t, 3, h, w) * masks_dilated
            updated_masks = updated_local_masks.view(b, t, 1, h, w)
            torch.cuda.empty_cache()
            
    
    ori_frames = frames_inp
    comp_frames = [None] * video_length

    neighbor_stride = neighbor_length // 2
    if video_length > subvideo_length:
        ref_num = subvideo_length // ref_stride
    else:
        ref_num = -1
    
    # ---- feature propagation + transformer ----
    for f in tqdm(range(0, video_length, neighbor_stride)):
        neighbor_ids = [
            i for i in range(max(0, f - neighbor_stride),
                                min(video_length, f + neighbor_stride + 1))
        ]
        ref_ids = get_ref_index(f, neighbor_ids, video_length, ref_stride, ref_num)
        selected_imgs = updated_frames[:, neighbor_ids + ref_ids, :, :, :]
        selected_masks = masks_dilated[:, neighbor_ids + ref_ids, :, :, :]
        selected_update_masks = updated_masks[:, neighbor_ids + ref_ids, :, :, :]
        selected_pred_flows_bi = (pred_flows_bi[0][:, neighbor_ids[:-1], :, :, :], pred_flows_bi[1][:, neighbor_ids[:-1], :, :, :])
        
        with torch.no_grad():
            # 1.0 indicates mask
            l_t = len(neighbor_ids)
            
            # pred_img = selected_imgs # results of image propagation
            pred_img = model(selected_imgs, selected_pred_flows_bi, selected_masks, selected_update_masks, l_t)
            
            pred_img = pred_img.view(-1, 3, h, w)

            pred_img = (pred_img + 1) / 2
            pred_img = pred_img.cpu().permute(0, 2, 3, 1).numpy() * 255
            binary_masks = masks_dilated[0, neighbor_ids, :, :, :].cpu().permute(
                0, 2, 3, 1).numpy().astype(np.uint8)
            for i in range(len(neighbor_ids)):
                idx = neighbor_ids[i]
                img = np.array(pred_img[i]).astype(np.uint8) * binary_masks[i] \
                    + ori_frames[idx] * (1 - binary_masks[i])
                if comp_frames[idx] is None:
                    comp_frames[idx] = img
                else: 
                    comp_frames[idx] = comp_frames[idx].astype(np.float32) * 0.5 + img.astype(np.float32) * 0.5
                    
                comp_frames[idx] = comp_frames[idx].astype(np.uint8)
        
        torch.cuda.empty_cache()
                
    # save each frame
    if save_frames:
        for idx in range(video_length):
            f = comp_frames[idx]
            f = cv2.resize(f, out_size, interpolation = cv2.INTER_CUBIC)
            f = cv2.cvtColor(f, cv2.COLOR_BGR2RGB)
            img_save_root = os.path.join(save_root, 'frames', str(idx).zfill(4)+'.png')
            imwrite(f, img_save_root)
                    

    # if mode == 'video_outpainting':
    #     comp_frames = [i[10:-10,10:-10] for i in comp_frames]
    #     masked_frame_for_save = [i[10:-10,10:-10] for i in masked_frame_for_save]
    
    # save videos frame
    masked_frame_for_save = [cv2.resize(f, out_size) for f in masked_frame_for_save]
    comp_frames = [cv2.resize(f, out_size) for f in comp_frames]
    imageio.mimwrite(os.path.join(save_root, 'masked_in.mp4'), masked_frame_for_save, fps=fps, quality=7)
    imageio.mimwrite(os.path.join(save_root, 'inpaint_out.mp4'), comp_frames, fps=fps, quality=7)
    
    print(f'\nAll results are saved in {save_root}')
    
    torch.cuda.empty_cache()

    return os.path.join(save_root, 'inpaint_out.mp4')