Spaces:
Configuration error
Configuration error
Commit
·
200a65d
1
Parent(s):
6879770
Added demo
Browse files- florence_sam/app.py +27 -386
- florence_sam/main.py +3 -2
florence_sam/app.py
CHANGED
@@ -1,397 +1,38 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
import cv2
|
5 |
import gradio as gr
|
6 |
-
import
|
7 |
-
import spaces
|
8 |
-
import supervision as sv
|
9 |
-
import torch
|
10 |
-
from PIL import Image
|
11 |
-
from tqdm import tqdm
|
12 |
-
from utils.video import generate_unique_name, create_directory, delete_directory
|
13 |
-
|
14 |
-
from utils.florence import load_florence_model, run_florence_inference, \
|
15 |
-
FLORENCE_DETAILED_CAPTION_TASK, \
|
16 |
-
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
|
17 |
-
from utils.modes import IMAGE_INFERENCE_MODES, IMAGE_OPEN_VOCABULARY_DETECTION_MODE, \
|
18 |
-
IMAGE_CAPTION_GROUNDING_MASKS_MODE, VIDEO_INFERENCE_MODES
|
19 |
-
from utils.sam import load_sam_image_model, run_sam_inference, load_sam_video_model
|
20 |
-
|
21 |
-
MARKDOWN = """
|
22 |
-
# Florence2 + SAM2 🔥
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
</a>
|
28 |
-
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-segment-images-with-sam-2.ipynb">
|
29 |
-
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab" style="display:inline-block;">
|
30 |
-
</a>
|
31 |
-
<a href="https://blog.roboflow.com/what-is-segment-anything-2/">
|
32 |
-
<img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="Roboflow" style="display:inline-block;">
|
33 |
-
</a>
|
34 |
-
<a href="https://www.youtube.com/watch?v=Dv003fTyO-Y">
|
35 |
-
<img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="display:inline-block;">
|
36 |
-
</a>
|
37 |
-
</div>
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
object detection, image captioning, or phrase grounding. In the second stage, SAM2
|
42 |
-
performs object segmentation on the image.
|
43 |
-
"""
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
[IMAGE_CAPTION_GROUNDING_MASKS_MODE, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None],
|
49 |
-
[IMAGE_CAPTION_GROUNDING_MASKS_MODE, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", None],
|
50 |
-
]
|
51 |
-
VIDEO_PROCESSING_EXAMPLES = [
|
52 |
-
["videos/clip-07-camera-1.mp4", "player in white outfit, player in black outfit, ball, rim"],
|
53 |
-
["videos/clip-07-camera-2.mp4", "player in white outfit, player in black outfit, ball, rim"],
|
54 |
-
["videos/clip-07-camera-3.mp4", "player in white outfit, player in black outfit, ball, rim"]
|
55 |
-
]
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
create_directory(directory_path=VIDEO_TARGET_DIRECTORY)
|
60 |
|
61 |
-
|
62 |
-
|
|
|
63 |
|
64 |
-
|
65 |
-
if torch.cuda.get_device_properties(0).major >= 8:
|
66 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
67 |
-
torch.backends.cudnn.allow_tf32 = True
|
68 |
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
text_position=sv.Position.CENTER_OF_MASS,
|
80 |
-
text_color=sv.Color.from_hex("#000000"),
|
81 |
-
border_radius=5
|
82 |
)
|
83 |
-
MASK_ANNOTATOR = sv.MaskAnnotator(
|
84 |
-
color=COLOR_PALETTE,
|
85 |
-
color_lookup=sv.ColorLookup.INDEX
|
86 |
-
)
|
87 |
-
|
88 |
-
|
89 |
-
def annotate_image(image, detections):
|
90 |
-
output_image = image.copy()
|
91 |
-
output_image = MASK_ANNOTATOR.annotate(output_image, detections)
|
92 |
-
output_image = BOX_ANNOTATOR.annotate(output_image, detections)
|
93 |
-
output_image = LABEL_ANNOTATOR.annotate(output_image, detections)
|
94 |
-
return output_image
|
95 |
-
|
96 |
-
|
97 |
-
def on_mode_dropdown_change(text):
|
98 |
-
return [
|
99 |
-
gr.Textbox(visible=text == IMAGE_OPEN_VOCABULARY_DETECTION_MODE),
|
100 |
-
gr.Textbox(visible=text == IMAGE_CAPTION_GROUNDING_MASKS_MODE),
|
101 |
-
]
|
102 |
-
|
103 |
-
|
104 |
-
@spaces.GPU
|
105 |
-
@torch.inference_mode()
|
106 |
-
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
107 |
-
def process_image(
|
108 |
-
mode_dropdown, image_input, text_input
|
109 |
-
) -> Tuple[Optional[Image.Image], Optional[str]]:
|
110 |
-
if not image_input:
|
111 |
-
gr.Info("Please upload an image.")
|
112 |
-
return None, None
|
113 |
-
|
114 |
-
if mode_dropdown == IMAGE_OPEN_VOCABULARY_DETECTION_MODE:
|
115 |
-
if not text_input:
|
116 |
-
gr.Info("Please enter a text prompt.")
|
117 |
-
return None, None
|
118 |
-
|
119 |
-
texts = [prompt.strip() for prompt in text_input.split(",")]
|
120 |
-
detections_list = []
|
121 |
-
for text in texts:
|
122 |
-
_, result = run_florence_inference(
|
123 |
-
model=FLORENCE_MODEL,
|
124 |
-
processor=FLORENCE_PROCESSOR,
|
125 |
-
device=DEVICE,
|
126 |
-
image=image_input,
|
127 |
-
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
|
128 |
-
text=text
|
129 |
-
)
|
130 |
-
detections = sv.Detections.from_lmm(
|
131 |
-
lmm=sv.LMM.FLORENCE_2,
|
132 |
-
result=result,
|
133 |
-
resolution_wh=image_input.size
|
134 |
-
)
|
135 |
-
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
|
136 |
-
detections_list.append(detections)
|
137 |
-
|
138 |
-
detections = sv.Detections.merge(detections_list)
|
139 |
-
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
|
140 |
-
return annotate_image(image_input, detections), None
|
141 |
-
|
142 |
-
if mode_dropdown == IMAGE_CAPTION_GROUNDING_MASKS_MODE:
|
143 |
-
_, result = run_florence_inference(
|
144 |
-
model=FLORENCE_MODEL,
|
145 |
-
processor=FLORENCE_PROCESSOR,
|
146 |
-
device=DEVICE,
|
147 |
-
image=image_input,
|
148 |
-
task=FLORENCE_DETAILED_CAPTION_TASK
|
149 |
-
)
|
150 |
-
caption = result[FLORENCE_DETAILED_CAPTION_TASK]
|
151 |
-
_, result = run_florence_inference(
|
152 |
-
model=FLORENCE_MODEL,
|
153 |
-
processor=FLORENCE_PROCESSOR,
|
154 |
-
device=DEVICE,
|
155 |
-
image=image_input,
|
156 |
-
task=FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK,
|
157 |
-
text=caption
|
158 |
-
)
|
159 |
-
detections = sv.Detections.from_lmm(
|
160 |
-
lmm=sv.LMM.FLORENCE_2,
|
161 |
-
result=result,
|
162 |
-
resolution_wh=image_input.size
|
163 |
-
)
|
164 |
-
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
|
165 |
-
return annotate_image(image_input, detections), caption
|
166 |
-
|
167 |
-
|
168 |
-
@spaces.GPU(duration=300)
|
169 |
-
@torch.inference_mode()
|
170 |
-
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
171 |
-
def process_video(
|
172 |
-
video_input, text_input, progress=gr.Progress(track_tqdm=True)
|
173 |
-
) -> Optional[str]:
|
174 |
-
if not video_input:
|
175 |
-
gr.Info("Please upload a video.")
|
176 |
-
return None
|
177 |
-
|
178 |
-
if not text_input:
|
179 |
-
gr.Info("Please enter a text prompt.")
|
180 |
-
return None
|
181 |
-
|
182 |
-
frame_generator = sv.get_video_frames_generator(video_input)
|
183 |
-
frame = next(frame_generator)
|
184 |
-
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
185 |
-
|
186 |
-
texts = [prompt.strip() for prompt in text_input.split(",")]
|
187 |
-
detections_list = []
|
188 |
-
for text in texts:
|
189 |
-
_, result = run_florence_inference(
|
190 |
-
model=FLORENCE_MODEL,
|
191 |
-
processor=FLORENCE_PROCESSOR,
|
192 |
-
device=DEVICE,
|
193 |
-
image=frame,
|
194 |
-
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
|
195 |
-
text=text
|
196 |
-
)
|
197 |
-
detections = sv.Detections.from_lmm(
|
198 |
-
lmm=sv.LMM.FLORENCE_2,
|
199 |
-
result=result,
|
200 |
-
resolution_wh=frame.size
|
201 |
-
)
|
202 |
-
detections = run_sam_inference(SAM_IMAGE_MODEL, frame, detections)
|
203 |
-
detections_list.append(detections)
|
204 |
-
|
205 |
-
detections = sv.Detections.merge(detections_list)
|
206 |
-
detections = run_sam_inference(SAM_IMAGE_MODEL, frame, detections)
|
207 |
-
|
208 |
-
if len(detections.mask) == 0:
|
209 |
-
gr.Info(
|
210 |
-
"No objects of class {text_input} found in the first frame of the video. "
|
211 |
-
"Trim the video to make the object appear in the first frame or try a "
|
212 |
-
"different text prompt."
|
213 |
-
)
|
214 |
-
return None
|
215 |
-
|
216 |
-
name = generate_unique_name()
|
217 |
-
frame_directory_path = os.path.join(VIDEO_TARGET_DIRECTORY, name)
|
218 |
-
frames_sink = sv.ImageSink(
|
219 |
-
target_dir_path=frame_directory_path,
|
220 |
-
image_name_pattern="{:05d}.jpeg"
|
221 |
-
)
|
222 |
-
|
223 |
-
video_info = sv.VideoInfo.from_video_path(video_input)
|
224 |
-
video_info.width = int(video_info.width * VIDEO_SCALE_FACTOR)
|
225 |
-
video_info.height = int(video_info.height * VIDEO_SCALE_FACTOR)
|
226 |
-
|
227 |
-
frames_generator = sv.get_video_frames_generator(video_input)
|
228 |
-
with frames_sink:
|
229 |
-
for frame in tqdm(
|
230 |
-
frames_generator,
|
231 |
-
total=video_info.total_frames,
|
232 |
-
desc="splitting video into frames"
|
233 |
-
):
|
234 |
-
frame = sv.scale_image(frame, VIDEO_SCALE_FACTOR)
|
235 |
-
frames_sink.save_image(frame)
|
236 |
-
|
237 |
-
inference_state = SAM_VIDEO_MODEL.init_state(
|
238 |
-
video_path=frame_directory_path,
|
239 |
-
device=DEVICE
|
240 |
-
)
|
241 |
-
|
242 |
-
for mask_index, mask in enumerate(detections.mask):
|
243 |
-
_, object_ids, mask_logits = SAM_VIDEO_MODEL.add_new_mask(
|
244 |
-
inference_state=inference_state,
|
245 |
-
frame_idx=0,
|
246 |
-
obj_id=mask_index,
|
247 |
-
mask=mask
|
248 |
-
)
|
249 |
-
|
250 |
-
video_path = os.path.join(VIDEO_TARGET_DIRECTORY, f"{name}.mp4")
|
251 |
-
frames_generator = sv.get_video_frames_generator(video_input)
|
252 |
-
masks_generator = SAM_VIDEO_MODEL.propagate_in_video(inference_state)
|
253 |
-
with sv.VideoSink(video_path, video_info=video_info) as sink:
|
254 |
-
for frame, (_, tracker_ids, mask_logits) in zip(frames_generator, masks_generator):
|
255 |
-
frame = sv.scale_image(frame, VIDEO_SCALE_FACTOR)
|
256 |
-
masks = (mask_logits > 0.0).cpu().numpy().astype(bool)
|
257 |
-
if len(masks.shape) == 4:
|
258 |
-
masks = np.squeeze(masks, axis=1)
|
259 |
-
|
260 |
-
detections = sv.Detections(
|
261 |
-
xyxy=sv.mask_to_xyxy(masks=masks),
|
262 |
-
mask=masks,
|
263 |
-
class_id=np.array(tracker_ids)
|
264 |
-
)
|
265 |
-
annotated_frame = frame.copy()
|
266 |
-
annotated_frame = MASK_ANNOTATOR.annotate(
|
267 |
-
scene=annotated_frame, detections=detections)
|
268 |
-
annotated_frame = BOX_ANNOTATOR.annotate(
|
269 |
-
scene=annotated_frame, detections=detections)
|
270 |
-
sink.write_frame(annotated_frame)
|
271 |
-
|
272 |
-
delete_directory(frame_directory_path)
|
273 |
-
return video_path
|
274 |
-
|
275 |
-
|
276 |
-
with gr.Blocks() as demo:
|
277 |
-
gr.Markdown(MARKDOWN)
|
278 |
-
with gr.Tab("Image"):
|
279 |
-
image_processing_mode_dropdown_component = gr.Dropdown(
|
280 |
-
choices=IMAGE_INFERENCE_MODES,
|
281 |
-
value=IMAGE_INFERENCE_MODES[0],
|
282 |
-
label="Mode",
|
283 |
-
info="Select a mode to use.",
|
284 |
-
interactive=True
|
285 |
-
)
|
286 |
-
with gr.Row():
|
287 |
-
with gr.Column():
|
288 |
-
image_processing_image_input_component = gr.Image(
|
289 |
-
type='pil', label='Upload image')
|
290 |
-
image_processing_text_input_component = gr.Textbox(
|
291 |
-
label='Text prompt',
|
292 |
-
placeholder='Enter comma separated text prompts')
|
293 |
-
image_processing_submit_button_component = gr.Button(
|
294 |
-
value='Submit', variant='primary')
|
295 |
-
with gr.Column():
|
296 |
-
image_processing_image_output_component = gr.Image(
|
297 |
-
type='pil', label='Image output')
|
298 |
-
image_processing_text_output_component = gr.Textbox(
|
299 |
-
label='Caption output', visible=False)
|
300 |
-
|
301 |
-
with gr.Row():
|
302 |
-
gr.Examples(
|
303 |
-
fn=process_image,
|
304 |
-
examples=IMAGE_PROCESSING_EXAMPLES,
|
305 |
-
inputs=[
|
306 |
-
image_processing_mode_dropdown_component,
|
307 |
-
image_processing_image_input_component,
|
308 |
-
image_processing_text_input_component
|
309 |
-
],
|
310 |
-
outputs=[
|
311 |
-
image_processing_image_output_component,
|
312 |
-
image_processing_text_output_component
|
313 |
-
],
|
314 |
-
run_on_click=True
|
315 |
-
)
|
316 |
-
with gr.Tab("Video"):
|
317 |
-
video_processing_mode_dropdown_component = gr.Dropdown(
|
318 |
-
choices=VIDEO_INFERENCE_MODES,
|
319 |
-
value=VIDEO_INFERENCE_MODES[0],
|
320 |
-
label="Mode",
|
321 |
-
info="Select a mode to use.",
|
322 |
-
interactive=True
|
323 |
-
)
|
324 |
-
with gr.Row():
|
325 |
-
with gr.Column():
|
326 |
-
video_processing_video_input_component = gr.Video(
|
327 |
-
label='Upload video')
|
328 |
-
video_processing_text_input_component = gr.Textbox(
|
329 |
-
label='Text prompt',
|
330 |
-
placeholder='Enter comma separated text prompts')
|
331 |
-
video_processing_submit_button_component = gr.Button(
|
332 |
-
value='Submit', variant='primary')
|
333 |
-
with gr.Column():
|
334 |
-
video_processing_video_output_component = gr.Video(
|
335 |
-
label='Video output')
|
336 |
-
with gr.Row():
|
337 |
-
gr.Examples(
|
338 |
-
fn=process_video,
|
339 |
-
examples=VIDEO_PROCESSING_EXAMPLES,
|
340 |
-
inputs=[
|
341 |
-
video_processing_video_input_component,
|
342 |
-
video_processing_text_input_component
|
343 |
-
],
|
344 |
-
outputs=video_processing_video_output_component,
|
345 |
-
run_on_click=True
|
346 |
-
)
|
347 |
-
|
348 |
-
image_processing_submit_button_component.click(
|
349 |
-
fn=process_image,
|
350 |
-
inputs=[
|
351 |
-
image_processing_mode_dropdown_component,
|
352 |
-
image_processing_image_input_component,
|
353 |
-
image_processing_text_input_component
|
354 |
-
],
|
355 |
-
outputs=[
|
356 |
-
image_processing_image_output_component,
|
357 |
-
image_processing_text_output_component
|
358 |
-
]
|
359 |
-
)
|
360 |
-
image_processing_text_input_component.submit(
|
361 |
-
fn=process_image,
|
362 |
-
inputs=[
|
363 |
-
image_processing_mode_dropdown_component,
|
364 |
-
image_processing_image_input_component,
|
365 |
-
image_processing_text_input_component
|
366 |
-
],
|
367 |
-
outputs=[
|
368 |
-
image_processing_image_output_component,
|
369 |
-
image_processing_text_output_component
|
370 |
-
]
|
371 |
-
)
|
372 |
-
image_processing_mode_dropdown_component.change(
|
373 |
-
on_mode_dropdown_change,
|
374 |
-
inputs=[image_processing_mode_dropdown_component],
|
375 |
-
outputs=[
|
376 |
-
image_processing_text_input_component,
|
377 |
-
image_processing_text_output_component
|
378 |
-
]
|
379 |
-
)
|
380 |
-
video_processing_submit_button_component.click(
|
381 |
-
fn=process_video,
|
382 |
-
inputs=[
|
383 |
-
video_processing_video_input_component,
|
384 |
-
video_processing_text_input_component
|
385 |
-
],
|
386 |
-
outputs=video_processing_video_output_component
|
387 |
-
)
|
388 |
-
video_processing_text_input_component.submit(
|
389 |
-
fn=process_video,
|
390 |
-
inputs=[
|
391 |
-
video_processing_video_input_component,
|
392 |
-
video_processing_text_input_component
|
393 |
-
],
|
394 |
-
outputs=video_processing_video_output_component
|
395 |
-
)
|
396 |
|
397 |
-
demo.launch(
|
|
|
1 |
+
from main import infer
|
2 |
+
import moviepy.editor as mp
|
|
|
|
|
3 |
import gradio as gr
|
4 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
def pre_processor(video_path, scale_factor, prompt, crop_duration):
|
7 |
+
# Load video with moviepy
|
8 |
+
video = mp.VideoFileClip(video_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Crop video to the specified duration (in seconds)
|
11 |
+
cropped_video = video.subclip(0, min(crop_duration, video.duration))
|
|
|
|
|
|
|
12 |
|
13 |
+
# Save the cropped video to a temporary file
|
14 |
+
temp_output = "cropped_video.mp4"
|
15 |
+
cropped_video.write_videofile(temp_output, codec="libx264")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Pass the cropped video and other parameters to the infer function
|
18 |
+
output = infer(temp_output, scale_factor, prompt)
|
|
|
19 |
|
20 |
+
# Clean up temporary files
|
21 |
+
if os.path.exists(temp_output):
|
22 |
+
os.remove(temp_output)
|
23 |
|
24 |
+
return output
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
+
demo = gr.Interface(
|
28 |
+
fn=pre_processor,
|
29 |
+
inputs=[
|
30 |
+
gr.Video(label="Upload Video"),
|
31 |
+
gr.Slider(0.1, 1.0, step=0.1, value=0.5, label="Resize Scale Factor (Due to OOM error)"),
|
32 |
+
gr.Textbox(label="Prompt"),
|
33 |
+
gr.Slider(1, 12, step=1, value=6, label="Crop Duration (seconds)")
|
34 |
+
],
|
35 |
+
outputs="video"
|
|
|
|
|
|
|
36 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
demo.launch()
|
florence_sam/main.py
CHANGED
@@ -31,6 +31,7 @@ def infer(video_path, scale_factor, prompt):
|
|
31 |
# remove intermediate files
|
32 |
shutil.rmtree("tmp")
|
33 |
|
34 |
-
return "results/inpaint_out.mp4"
|
35 |
|
36 |
-
|
|
|
|
31 |
# remove intermediate files
|
32 |
shutil.rmtree("tmp")
|
33 |
|
34 |
+
return "results/input_frames/inpaint_out.mp4"
|
35 |
|
36 |
+
if __name__ == "__main__":
|
37 |
+
infer("/home/ubuntu/ahmedghani/clip-07-camera-2.mp4", 0.5, "players, basketball, rim, players shadow")
|