import pandas as pd import gradio as gr data = { "Method": [ "AIN-7B", "GPT-4o", "GPT-4o-mini", "Qwen2-VL-7B", "Gemini-1.5-Pro", "Gemini-1.5-Flash", "LLaVa-OneVision-7B", "Pangea-7B-Instruct", "Qwen2-VL-2B", "InternVL2-8B", "LLaVa-NeXt-7B", "Maya-8B" ], "MM Understanding & Reasoning": [ 56.78, 55.15, 48.83, 48.76, 46.67, 45.58, 42.90, 40.09, 40.59, 30.41, 26.33, 39.07 ], "OCR & Document Understanding": [ 72.35, 54.98, 39.38, 42.73, 36.59, 33.59, 31.35, 17.75, 25.68, 15.91, 19.12, 26.70 ], "Video Understanding": [ 64.09, 69.65, 66.28, 61.97, 42.94, 53.31, 29.41, 49.01, 38.90, 51.42, 44.90, 47.23 ], "Remote Sensing Understanding": [ 45.92, 27.36, 16.93, 21.30, 17.07, 14.95, 10.72, 6.67, 12.56, 5.36, 8.33, 27.53 ], "Charts & Diagram Understanding": [ 64.10, 62.35, 56.37, 54.67, 47.06, 48.25, 40.86, 38.75, 27.83, 30.27, 27.56, 34.25 ], "Agro Specific": [ 85.05, 80.75, 78.80, 79.32, 72.12, 76.06, 75.03, 74.51, 52.02, 44.47, 42.00, 70.61 ], "Cultural Specific Understanding": [ 78.09, 80.86, 65.92, 75.96, 56.24, 46.54, 66.02, 20.34, 34.27, 20.88, 28.30, 57.42 ], "Medical Imaging": [ 43.77, 49.91, 47.37, 35.81, 33.77, 42.86, 27.29, 31.99, 29.12, 29.48, 22.54, 31.57 ], } # data = { # "Method": [ # "GPT-4o", "GPT-4o-mini", "Qwen2-VL-7B", "Gemini-1.5-Pro", "Gemini-1.5-Flash", # "LLaVa-OneVision-7B", "Pangea-7B-Instruct", "Qwen2-VL-2B", "InternVL2-8B", "LLaVa-NeXt-7B", "Maya-8B" # ], # "MM Understanding & Reasoning": [ # 57.90, 48.82, 51.35, 46.67, 45.58, 42.90, 40.09, 40.59, 30.41, 26.33, 39.07 # ], # "OCR & Document Understanding": [ # 59.11, 42.89, 49.06, 36.59, 33.59, 31.35, 17.75, 25.68, 15.91, 19.12, 26.70 # ], # "Charts & Diagram Understanding": [ # 73.57, 64.98, 55.39, 47.06, 48.25, 40.86, 38.75, 27.83, 30.27, 27.56, 34.25 # ], # "Video Understanding": [ # 74.27, 68.11, 62.64, 42.94, 53.31, 29.41, 49.01, 38.90, 51.42, 44.90, 47.23 # ], # "Cultural Specific Understanding": [ # 80.86, 65.92, 75.64, 56.24, 46.54, 66.02, 20.34, 34.27, 20.88, 28.30, 57.42 # ], # "Medical Imaging": [ # 49.90, 47.37, 39.42, 33.77, 42.86, 27.29, 31.99, 29.12, 29.48, 22.54, 31.57 # ], # "Agro Specific": [ # 80.75, 79.58, 79.84, 72.12, 76.06, 75.03, 74.51, 52.02, 44.47, 42.00, 70.61 # ], # "Remote Sensing Understanding": [ # 22.85, 16.93, 22.28, 17.07, 14.95, 10.72, 6.67, 12.56, 5.36, 8.33, 27.53 # ] # } df = pd.DataFrame(data) df['Average Score'] = df.iloc[:, 1:].mean(axis=1).round(2) df = df[['Method', 'Average Score'] + [col for col in df.columns if col not in ['Method', 'Average Score']]] def display_data(): return df with gr.Blocks() as demo: gr.Markdown("![camel icon](https://cdn-uploads.huggingface.co/production/uploads/656864e12d73834278a8dea7/n-XfVKd1xVywH_vgPyJyQ.png)", elem_id="camel-icon") # Replace with actual camel icon URL gr.Markdown("# **CAMEL-Bench: Model Performance Across Vision Understanding Tasks**") gr.Markdown(""" This table shows the performance of different models across various tasks including OCR, chart understanding, video, medical imaging, and more. """) with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 LLM Leaderboard", elem_id="llm-benchmark-tab-table", id=0): # with gr.Row(): # with gr.Column(): gr.Dataframe(value=df, label="CAMEL-Bench Model Performance", interactive=False) with gr.TabItem("📤 How to Submit", elem_id="submission-tab", id=1): gr.Markdown(""" ## Submission Instructions To contribute your model's results to the CAMEL-Bench leaderboard: - **Via GitHub Pull Request**: - Use [this evaluation script](https://github.com/mbzuai-oryx/Camel-Bench/blob/main/scripts/eval_qwen.py) to test your model and generate results. - Create a pull request in the CAMEL-Bench GitHub repository with your results. - **Via Email**: - Send your results to **ahmed.heakl@mbzuai.ac.ae**, and we’ll add them to the leaderboard for you. **We look forward to seeing your contributions!** """) demo.launch()