Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,23 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
import requests
|
4 |
from PIL import Image
|
5 |
-
import
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
|
11 |
def caption_image(image):
|
12 |
-
#
|
13 |
-
|
14 |
-
image.save(buffered, format="JPEG")
|
15 |
-
img_bytes = buffered.getvalue()
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
return "Error generating caption"
|
25 |
|
26 |
# Set up the Gradio interface
|
27 |
interface = gr.Interface(
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
|
|
3 |
from PIL import Image
|
4 |
+
import torch
|
5 |
|
6 |
+
# Load the processor and model
|
7 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
8 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
9 |
|
10 |
def caption_image(image):
|
11 |
+
# Prepare the image
|
12 |
+
inputs = processor(images=image, return_tensors="pt")
|
|
|
|
|
13 |
|
14 |
+
# Generate caption
|
15 |
+
out = model.generate(**inputs)
|
16 |
|
17 |
+
# Decode the generated caption
|
18 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
19 |
+
|
20 |
+
return caption
|
|
|
21 |
|
22 |
# Set up the Gradio interface
|
23 |
interface = gr.Interface(
|