ahmedxeno's picture
Rename app .py to app.py
5870d6c
raw
history blame
905 Bytes
import gradio as gr
import matplotlib.pyplot as plt
import cv2
import torch
import timm
import numpy as np
midas = torch.hub.load('intel-isl/MiDaS', 'MiDaS_small')
midas.to('cpu')
midas.eval()
transforms = torch.hub.load('intel-isl/MiDaS', 'transforms')
transform = transforms.small_transform
def predict_image(img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
input_batch = transform(img).to('cpu')
with torch.no_grad():
prediction = midas(input_batch)
prediction = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=img.shape[:2],
mode="bicubic",
align_corners=False,
).squeeze()
img = prediction.cpu().numpy()
img = (img / 1000.0)*255
out = (img).astype(np.uint8)
return out
image = gr.inputs.Image()
label = gr.outputs.Label('ok')
gr.Interface(fn=predict_image, inputs=image, outputs=image).launch(debug='True')