import gradio as gr import tensorflow as tf import tensorflow.keras import matplotlib.pyplot as plt import cv2 import tensorflow_io as tfio import numpy as np loaded_model = tf.keras.models.load_model( 'brain1.h5') def take_img(img): resize = tf.image.resize(img, (128,128)) gray = tfio.experimental.color.bgr_to_rgb(resize) yhat = loaded_model.predict(np.expand_dims(gray/255, 0)) label_names = { "1": "Tumor", "2": "Normal"} classes_x=np.argmax(yhat,axis=1) a = classes_x[0] input_value = a + 1 input_str = str(input_value) predicted_label = label_names[input_str] tumor = yhat[0][0] tumor = str(tumor) normal = yhat[0][1] normal = str(normal) return {'Tumour': tumor, 'Normal':normal} image = gr.inputs.Image(shape=(128,128)) label = gr.outputs.Label('ok') gr.Interface(fn=take_img, inputs=image, outputs="label",interpretation='default').launch(debug='True')