Spaces:
Runtime error
Runtime error
import os | |
import openai | |
import chainlit as cl | |
from langchain_community.document_loaders import PyMuPDFLoader | |
from langchain_openai import OpenAIEmbeddings | |
from langchain_openai import ChatOpenAI | |
from langchain_community.vectorstores import Qdrant | |
from langchain.prompts import ChatPromptTemplate | |
from dotenv import load_dotenv | |
from operator import itemgetter | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain_community.document_loaders import TextLoader | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain_huggingface import HuggingFaceEndpointEmbeddings | |
from langchain_core.prompts import PromptTemplate | |
from langchain.schema.output_parser import StrOutputParser | |
from langchain.schema.runnable import RunnablePassthrough | |
from langchain.schema.runnable.config import RunnableConfig | |
#Load environment variables | |
load_dotenv() | |
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] | |
#Load 10-K PDF and split into chunks | |
loader = PyMuPDFLoader ( | |
"./data/AirBNB10kfilingsq12024.pdf" | |
) | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size = 1000, | |
chunk_overlap = 100 | |
) | |
documents = text_splitter.split_documents(documents) | |
#Load embeddings model - we'll use OpenAI's text-embedding-3-small | |
embeddings = OpenAIEmbeddings( | |
model="text-embedding-3-small" | |
) | |
#Create QDrant vector store | |
qdrant_vector_store = Qdrant.from_documents( | |
documents, | |
embeddings, | |
location=":memory:", | |
collection_name="AirBNB10k", | |
) | |
#Create Retriever | |
retriever = qdrant_vector_store.as_retriever() | |
#Create Prompt Template | |
template = """Answer the question based only on the following context. If you cannot answer the question with the context, please respond with 'I don't know': | |
Context: | |
{context} | |
Question: | |
{question} | |
""" | |
prompt = ChatPromptTemplate.from_template(template) | |
#Choose LLM - we'll use gpt-4o. | |
primary_llm = ChatOpenAI(model_name="gpt-4o", temperature=0) | |
#Set up Chainlit | |
def rename(original_author: str): | |
""" | |
This function can be used to rename the 'author' of a message. | |
In this case, we're overriding the 'Assistant' author to be 'Airbnb10kBot'. | |
""" | |
rename_dict = { | |
"Assistant" : "Airbnb10kBot" | |
} | |
return rename_dict.get(original_author, original_author) | |
async def start_chat(): | |
""" | |
This function will be called at the start of every user session. | |
We will build our LCEL RAG chain here, and store it in the user session. | |
The user session is a dictionary that is unique to each user session, and is stored in the memory of the server. | |
""" | |
retrieval_augmented_chain = ( | |
# INVOKE CHAIN WITH: {"question" : "<<SOME USER QUESTION>>"} | |
# "question" : populated by getting the value of the "question" key | |
# "context" : populated by getting the value of the "question" key and chaining it into the base_retriever | |
{"context": itemgetter("question") | retriever, "question": itemgetter("question")} | |
| prompt | primary_llm | |
) | |
cl.user_session.set("retrieval_augmented_chain", retrieval_augmented_chain) | |
async def main(message: cl.Message): | |
""" | |
This function will be called every time a message is recieved from a session. | |
We will use the LCEL RAG chain to generate a response to the user query. | |
The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here. | |
""" | |
retrieval_augmented_chain = cl.user_session.get("retrieval_augmented_chain") | |
msg = cl.Message(content="") | |
async for chunk in retrieval_augmented_chain.astream( | |
{"question": message.content}, | |
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]), | |
): | |
await msg.stream_token(chunk.content) | |
await msg.send() |