import os import openai import chainlit as cl from langchain_community.document_loaders import PyMuPDFLoader from langchain_openai import OpenAIEmbeddings from langchain_openai import ChatOpenAI from langchain_community.vectorstores import Qdrant from langchain.prompts import ChatPromptTemplate from dotenv import load_dotenv from operator import itemgetter from langchain_huggingface import HuggingFaceEndpoint from langchain_community.document_loaders import TextLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import FAISS from langchain_huggingface import HuggingFaceEndpointEmbeddings from langchain_core.prompts import PromptTemplate from langchain.schema.output_parser import StrOutputParser from langchain.schema.runnable import RunnablePassthrough from langchain.schema.runnable.config import RunnableConfig #Load environment variables load_dotenv() OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] #Load 10-K PDF and split into chunks loader = PyMuPDFLoader ( "./data/AirBNB10kfilingsq12024.pdf" ) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter( chunk_size = 1000, chunk_overlap = 100 ) documents = text_splitter.split_documents(documents) #Load embeddings model - we'll use OpenAI's text-embedding-3-small embeddings = OpenAIEmbeddings( model="text-embedding-3-small" ) #Create QDrant vector store qdrant_vector_store = Qdrant.from_documents( documents, embeddings, location=":memory:", collection_name="AirBNB10k", ) #Create Retriever retriever = qdrant_vector_store.as_retriever() #Create Prompt Template template = """Answer the question based only on the following context. If you cannot answer the question with the context, please respond with 'I don't know': Context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) #Choose LLM - we'll use gpt-4o. primary_llm = ChatOpenAI(model_name="gpt-4o", temperature=0) #Set up Chainlit @cl.author_rename def rename(original_author: str): """ This function can be used to rename the 'author' of a message. In this case, we're overriding the 'Assistant' author to be 'Airbnb10kBot'. """ rename_dict = { "Assistant" : "Airbnb10kBot" } return rename_dict.get(original_author, original_author) @cl.on_chat_start async def start_chat(): """ This function will be called at the start of every user session. We will build our LCEL RAG chain here, and store it in the user session. The user session is a dictionary that is unique to each user session, and is stored in the memory of the server. """ retrieval_augmented_chain = ( # INVOKE CHAIN WITH: {"question" : "<>"} # "question" : populated by getting the value of the "question" key # "context" : populated by getting the value of the "question" key and chaining it into the base_retriever {"context": itemgetter("question") | retriever, "question": itemgetter("question")} | prompt | primary_llm ) cl.user_session.set("retrieval_augmented_chain", retrieval_augmented_chain) @cl.on_message async def main(message: cl.Message): """ This function will be called every time a message is recieved from a session. We will use the LCEL RAG chain to generate a response to the user query. The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here. """ retrieval_augmented_chain = cl.user_session.get("retrieval_augmented_chain") msg = cl.Message(content="") async for chunk in retrieval_augmented_chain.astream( {"question": message.content}, config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]), ): await msg.stream_token(chunk.content) await msg.send()