Test
Browse files- .chainlit/config.toml +84 -0
- Dockerfile +12 -0
- app.py +123 -0
- chainlit.md +2 -0
- requirements.txt +14 -0
.chainlit/config.toml
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
# Whether to enable telemetry (default: true). No personal data is collected.
|
3 |
+
enable_telemetry = true
|
4 |
+
|
5 |
+
# List of environment variables to be provided by each user to use the app.
|
6 |
+
user_env = []
|
7 |
+
|
8 |
+
# Duration (in seconds) during which the session is saved when the connection is lost
|
9 |
+
session_timeout = 3600
|
10 |
+
|
11 |
+
# Enable third parties caching (e.g LangChain cache)
|
12 |
+
cache = false
|
13 |
+
|
14 |
+
# Follow symlink for asset mount (see https://github.com/Chainlit/chainlit/issues/317)
|
15 |
+
# follow_symlink = false
|
16 |
+
|
17 |
+
[features]
|
18 |
+
# Show the prompt playground
|
19 |
+
prompt_playground = true
|
20 |
+
|
21 |
+
# Process and display HTML in messages. This can be a security risk (see https://stackoverflow.com/questions/19603097/why-is-it-dangerous-to-render-user-generated-html-or-javascript)
|
22 |
+
unsafe_allow_html = false
|
23 |
+
|
24 |
+
# Process and display mathematical expressions. This can clash with "$" characters in messages.
|
25 |
+
latex = false
|
26 |
+
|
27 |
+
# Authorize users to upload files with messages
|
28 |
+
multi_modal = true
|
29 |
+
|
30 |
+
# Allows user to use speech to text
|
31 |
+
[features.speech_to_text]
|
32 |
+
enabled = false
|
33 |
+
# See all languages here https://github.com/JamesBrill/react-speech-recognition/blob/HEAD/docs/API.md#language-string
|
34 |
+
# language = "en-US"
|
35 |
+
|
36 |
+
[UI]
|
37 |
+
# Name of the app and chatbot.
|
38 |
+
name = "Chatbot"
|
39 |
+
|
40 |
+
# Show the readme while the conversation is empty.
|
41 |
+
show_readme_as_default = true
|
42 |
+
|
43 |
+
# Description of the app and chatbot. This is used for HTML tags.
|
44 |
+
# description = ""
|
45 |
+
|
46 |
+
# Large size content are by default collapsed for a cleaner ui
|
47 |
+
default_collapse_content = true
|
48 |
+
|
49 |
+
# The default value for the expand messages settings.
|
50 |
+
default_expand_messages = false
|
51 |
+
|
52 |
+
# Hide the chain of thought details from the user in the UI.
|
53 |
+
hide_cot = false
|
54 |
+
|
55 |
+
# Link to your github repo. This will add a github button in the UI's header.
|
56 |
+
# github = ""
|
57 |
+
|
58 |
+
# Specify a CSS file that can be used to customize the user interface.
|
59 |
+
# The CSS file can be served from the public directory or via an external link.
|
60 |
+
# custom_css = "/public/test.css"
|
61 |
+
|
62 |
+
# Override default MUI light theme. (Check theme.ts)
|
63 |
+
[UI.theme.light]
|
64 |
+
#background = "#FAFAFA"
|
65 |
+
#paper = "#FFFFFF"
|
66 |
+
|
67 |
+
[UI.theme.light.primary]
|
68 |
+
#main = "#F80061"
|
69 |
+
#dark = "#980039"
|
70 |
+
#light = "#FFE7EB"
|
71 |
+
|
72 |
+
# Override default MUI dark theme. (Check theme.ts)
|
73 |
+
[UI.theme.dark]
|
74 |
+
#background = "#FAFAFA"
|
75 |
+
#paper = "#FFFFFF"
|
76 |
+
|
77 |
+
[UI.theme.dark.primary]
|
78 |
+
#main = "#F80061"
|
79 |
+
#dark = "#980039"
|
80 |
+
#light = "#FFE7EB"
|
81 |
+
|
82 |
+
|
83 |
+
[meta]
|
84 |
+
generated_by = "0.7.700"
|
Dockerfile
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11.9
|
2 |
+
RUN useradd -m -u 1000 user
|
3 |
+
USER user
|
4 |
+
ENV HOME=/home/user \
|
5 |
+
PATH=/home/user/.local/bin:$PATH
|
6 |
+
RUN mkdir -p $HOME/app/data/vectorstore && chown -R user:user $HOME/app/data
|
7 |
+
WORKDIR $HOME/app
|
8 |
+
COPY --chown=user . $HOME/app
|
9 |
+
COPY ./requirements.txt ~/app/requirements.txt
|
10 |
+
RUN pip install -r requirements.txt
|
11 |
+
COPY . .
|
12 |
+
CMD ["chainlit", "run", "app.py", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import openai
|
3 |
+
import chainlit as cl
|
4 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
5 |
+
from langchain_openai import OpenAIEmbeddings
|
6 |
+
from langchain_openai import ChatOpenAI
|
7 |
+
from langchain_community.vectorstores import Qdrant
|
8 |
+
from langchain.prompts import ChatPromptTemplate
|
9 |
+
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
from operator import itemgetter
|
12 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
13 |
+
from langchain_community.document_loaders import TextLoader
|
14 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
15 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
16 |
+
from langchain_community.vectorstores import FAISS
|
17 |
+
from langchain_huggingface import HuggingFaceEndpointEmbeddings
|
18 |
+
from langchain_core.prompts import PromptTemplate
|
19 |
+
from langchain.schema.output_parser import StrOutputParser
|
20 |
+
from langchain.schema.runnable import RunnablePassthrough
|
21 |
+
from langchain.schema.runnable.config import RunnableConfig
|
22 |
+
|
23 |
+
#Load environment variables
|
24 |
+
load_dotenv()
|
25 |
+
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
|
26 |
+
|
27 |
+
#Load 10-K PDF and split into chunks
|
28 |
+
loader = PyMuPDFLoader (
|
29 |
+
"./data/AirBNB10kfilingsq12024.pdf"
|
30 |
+
)
|
31 |
+
|
32 |
+
documents = loader.load()
|
33 |
+
|
34 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
35 |
+
chunk_size = 1000,
|
36 |
+
chunk_overlap = 100
|
37 |
+
)
|
38 |
+
|
39 |
+
documents = text_splitter.split_documents(documents)
|
40 |
+
|
41 |
+
#Load embeddings model - we'll use OpenAI's text-embedding-3-small
|
42 |
+
embeddings = OpenAIEmbeddings(
|
43 |
+
model="text-embedding-3-small"
|
44 |
+
)
|
45 |
+
|
46 |
+
#Create QDrant vector store
|
47 |
+
qdrant_vector_store = Qdrant.from_documents(
|
48 |
+
documents,
|
49 |
+
embeddings,
|
50 |
+
location=":memory:",
|
51 |
+
collection_name="AirBNB10k",
|
52 |
+
)
|
53 |
+
|
54 |
+
#Create Retriever
|
55 |
+
retriever = qdrant_vector_store.as_retriever()
|
56 |
+
|
57 |
+
#Create Prompt Template
|
58 |
+
template = """Answer the question based only on the following context. If you cannot answer the question with the context, please respond with 'I don't know':
|
59 |
+
|
60 |
+
Context:
|
61 |
+
{context}
|
62 |
+
|
63 |
+
Question:
|
64 |
+
{question}
|
65 |
+
"""
|
66 |
+
|
67 |
+
prompt = ChatPromptTemplate.from_template(template)
|
68 |
+
|
69 |
+
#Choose LLM - we'll use gpt-4o.
|
70 |
+
primary_llm = ChatOpenAI(model_name="gpt-4o", temperature=0)
|
71 |
+
|
72 |
+
#Set up Chainlit
|
73 |
+
@cl.author_rename
|
74 |
+
def rename(original_author: str):
|
75 |
+
"""
|
76 |
+
This function can be used to rename the 'author' of a message.
|
77 |
+
|
78 |
+
In this case, we're overriding the 'Assistant' author to be 'Airbnb10kBot'.
|
79 |
+
"""
|
80 |
+
rename_dict = {
|
81 |
+
"Assistant" : "Airbnb10kBot"
|
82 |
+
}
|
83 |
+
return rename_dict.get(original_author, original_author)
|
84 |
+
|
85 |
+
@cl.on_chat_start
|
86 |
+
async def start_chat():
|
87 |
+
"""
|
88 |
+
This function will be called at the start of every user session.
|
89 |
+
|
90 |
+
We will build our LCEL RAG chain here, and store it in the user session.
|
91 |
+
|
92 |
+
The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
|
93 |
+
"""
|
94 |
+
retrieval_augmented_chain = (
|
95 |
+
# INVOKE CHAIN WITH: {"question" : "<<SOME USER QUESTION>>"}
|
96 |
+
# "question" : populated by getting the value of the "question" key
|
97 |
+
# "context" : populated by getting the value of the "question" key and chaining it into the base_retriever
|
98 |
+
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
|
99 |
+
| prompt | primary_llm
|
100 |
+
)
|
101 |
+
|
102 |
+
cl.user_session.set("retrieval_augmented_chain", retrieval_augmented_chain)
|
103 |
+
|
104 |
+
@cl.on_message
|
105 |
+
async def main(message: cl.Message):
|
106 |
+
"""
|
107 |
+
This function will be called every time a message is recieved from a session.
|
108 |
+
|
109 |
+
We will use the LCEL RAG chain to generate a response to the user query.
|
110 |
+
|
111 |
+
The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
|
112 |
+
"""
|
113 |
+
retrieval_augmented_chain = cl.user_session.get("retrieval_augmented_chain")
|
114 |
+
|
115 |
+
msg = cl.Message(content="")
|
116 |
+
|
117 |
+
async for chunk in retrieval_augmented_chain.astream(
|
118 |
+
{"question": message.content},
|
119 |
+
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
|
120 |
+
):
|
121 |
+
await msg.stream_token(chunk.content)
|
122 |
+
|
123 |
+
await msg.send()
|
chainlit.md
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# HTM LLM - Service Manual - Connex 6000 Welch Allyn Vitals Sign Monitor
|
2 |
+
# Ask me anything about the service manual!
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
chainlit==0.7.700
|
2 |
+
langchain==0.2.5
|
3 |
+
langchain_community==0.2.5
|
4 |
+
langchain_core==0.2.9
|
5 |
+
langchain_huggingface==0.0.3
|
6 |
+
langchain_text_splitters==0.2.1
|
7 |
+
python-dotenv==1.0.1
|
8 |
+
langchain-openai
|
9 |
+
langchainhub
|
10 |
+
openai
|
11 |
+
faiss-cpu
|
12 |
+
qdrant-client
|
13 |
+
pymupdf
|
14 |
+
pandas
|