Spaces:
Running
on
Zero
Running
on
Zero
from functools import cache | |
from pickle import load | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
from scorer import build_model | |
def load_model(device): | |
return build_model(device=device) | |
def load_reference_scores(gmmdir='models'): | |
with np.load(f"{gmmdir}/refscores.npz", "rb") as f: | |
ref_nll = f["arr_0"] | |
return ref_nll | |
def compute_gmm_likelihood(x_score, gmmdir='models'): | |
with open(f"{gmmdir}/gmm.pkl", "rb") as f: | |
clf = load(f) | |
nll = -clf.score(x_score) | |
ref_nll = load_reference_scores(gmmdir) | |
percentile = (ref_nll < nll).mean() * 100 | |
return nll, percentile | |
def plot_against_reference(nll): | |
ref_nll = load_reference_scores() | |
print(ref_nll.shape) | |
fig, ax = plt.subplots() | |
ax.hist(ref_nll) | |
ax.axvline(nll, label='Image Score', c='red', ls="--") | |
plt.legend() | |
fig.tight_layout() | |
return fig | |
def run_inference(img, device='cuda'): | |
img = torch.from_numpy(img).permute(2,0,1).unsqueeze(0) | |
img = torch.nn.functional.interpolate(img, size=64, mode='bilinear') | |
model = load_model(device=device) | |
x = model(img.cuda()) | |
x = x.square().sum(dim=(2, 3, 4)) ** 0.5 | |
nll, pct = compute_gmm_likelihood(x.cpu()) | |
plot = plot_against_reference(nll) | |
print(plot) | |
outstr = f"Anomaly score: {nll:.3f} -> {pct:.2f} percentile" | |
return outstr, plot | |
demo = gr.Interface( | |
fn=run_inference, | |
inputs=["image"], | |
outputs=["text", gr.Plot()], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |