Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from sentence_transformers import CrossEncoder
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
reranker = CrossEncoder("sentence-transformers/all-MiniLM-L12-v2")
|
6 |
+
|
7 |
+
|
8 |
+
def rerank_documents(query: str, documents: pd.DataFrame) -> pd.DataFrame:
|
9 |
+
documents = documents.copy()
|
10 |
+
documents = documents.drop_duplicates("chunk")
|
11 |
+
documents["rank"] = reranker.predict([[query, hit] for hit in documents["chunk"]])
|
12 |
+
documents = documents.sort_values(by="rank", ascending=False)
|
13 |
+
return documents
|
14 |
+
|
15 |
+
|
16 |
+
with gr.Blocks() as demo:
|
17 |
+
gr.Markdown("""# RAG Hub Datasets
|
18 |
+
|
19 |
+
Part of [smol blueprint](https://github.com/davidberenstein1957/smol-blueprint) - a smol blueprint for AI development, focusing on practical examples of RAG, information extraction, analysis and fine-tuning in the age of LLMs.""")
|
20 |
+
|
21 |
+
query_input = gr.Textbox(
|
22 |
+
label="Query", placeholder="Enter your question here...", lines=3
|
23 |
+
)
|
24 |
+
documents_input = gr.Dataframe(
|
25 |
+
label="Documents", headers=["chunk"], wrap=True, interactive=True
|
26 |
+
)
|
27 |
+
|
28 |
+
submit_btn = gr.Button("Submit")
|
29 |
+
documents_output = gr.Dataframe(
|
30 |
+
label="Documents", headers=["chunk", "rank"], wrap=True
|
31 |
+
)
|
32 |
+
|
33 |
+
submit_btn.click(
|
34 |
+
fn=rerank_documents,
|
35 |
+
inputs=[query_input, documents_input],
|
36 |
+
outputs=[documents_output],
|
37 |
+
)
|
38 |
+
|
39 |
+
demo.launch()
|