File size: 1,345 Bytes
5dc52fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import gradio as gr

from sentence_transformers import SentenceTransformer
import duckdb
from huggingface_hub import get_token

model = SentenceTransformer("Snowflake/snowflake-arctic-embed-m-v1.5")

def similarity_search(
    query: str, 
    k: int = 5, 
    dataset_name: str = "smol-blueprint-project/hf-blogs-text-embeddings", 
    embedding_column: str = "embedding",
):
    # Use same model as used for indexing
    query_vector = model.encode(query)
    embedding_dim = model.get_sentence_embedding_dimension()
    
    sql = f"""
        SELECT 
            title,
            author,
            date,
            local,
            tags,
            URL,
            chunk,
            array_cosine_distance(
                {embedding_column}::float[{embedding_dim}], 
                {query_vector.tolist()}::float[{embedding_dim}]
            ) as distance
        FROM 'hf://datasets/{dataset_name}/**/*.parquet'
        ORDER BY distance
        LIMIT {k}
    """
    
    return duckdb.sql(sql).to_df()

with gr.Blocks() as demo:
    query = gr.Textbox(label="Query")
    k = gr.Slider(1, 10, value=5, label="Number of results")
    btn = gr.Button("Search")
    results = gr.Dataframe(headers=["title", "url", "content", "distance"])
    btn.click(fn=similarity_search, inputs=[query, k], outputs=[results])
    

demo.launch()