Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# Copyright (c) Microsoft Corporation. All rights reserved. | |
# Licensed under the MIT License. | |
""" Gradio Demo for image detection""" | |
# Importing necessary basic libraries and modules | |
import os | |
# PyTorch imports | |
import torch | |
from torch.utils.data import DataLoader | |
# Importing the model, dataset, transformations and utility functions from PytorchWildlife | |
from PytorchWildlife.models import detection as pw_detection | |
from PytorchWildlife import utils as pw_utils | |
# Importing basic libraries | |
import shutil | |
import time | |
from PIL import Image | |
import supervision as sv | |
import gradio as gr | |
from zipfile import ZipFile | |
import numpy as np | |
import ast | |
# Importing the models, dataset, transformations, and utility functions from PytorchWildlife | |
from PytorchWildlife.models import classification as pw_classification | |
from PytorchWildlife.data import transforms as pw_trans | |
from PytorchWildlife.data import datasets as pw_data | |
# Setting the device to use for computations ('cuda' indicates GPU) | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
# Initializing a supervision box annotator for visualizing detections | |
dot_annotator = sv.DotAnnotator(radius=6) | |
box_annotator = sv.BoxAnnotator(thickness=4) | |
lab_annotator = sv.LabelAnnotator(text_color=sv.Color.BLACK, text_thickness=4, text_scale=2) | |
# Create a temp folder | |
os.makedirs(os.path.join("..","temp"), exist_ok=True) # ASK: Why do we need this? | |
# Initializing the detection and classification models | |
detection_model = None | |
classification_model = None | |
# Defining functions for different detection scenarios | |
def load_models(det, version, clf, wpath=None, wclass=None): | |
global detection_model, classification_model | |
if det != "None": | |
if det == "HerdNet General": | |
detection_model = pw_detection.HerdNet(device=DEVICE) | |
elif det == "HerdNet Ennedi": | |
detection_model = pw_detection.HerdNet(device=DEVICE, version="ennedi") | |
else: | |
detection_model = pw_detection.__dict__[det](device=DEVICE, pretrained=True, version=version) | |
else: | |
detection_model = None | |
return "NO MODEL LOADED!!" | |
if clf != "None": | |
# Create an exception for custom weights | |
if clf == "CustomWeights": | |
if (wpath is not None) and (wclass is not None): | |
wclass = ast.literal_eval(wclass) | |
classification_model = pw_classification.__dict__[clf](weights=wpath, class_names=wclass, device=DEVICE) | |
else: | |
classification_model = pw_classification.__dict__[clf](device=DEVICE, pretrained=True) | |
else: | |
classification_model = None | |
return "Loaded Detector: {}. Version: {}. Loaded Classifier: {}".format(det, version, clf) | |
def single_image_detection(input_img, det_conf_thres, clf_conf_thres, img_index=None): | |
"""Performs detection on a single image and returns an annotated image. | |
Args: | |
input_img (PIL.Image): Input image in PIL.Image format defaulted by Gradio. | |
det_conf_thres (float): Confidence threshold for detection. | |
clf_conf_thres (float): Confidence threshold for classification. | |
img_index: Image index identifier. | |
Returns: | |
annotated_img (PIL.Image.Image): Annotated image with bounding box instances. | |
""" | |
input_img = np.array(input_img) | |
# If the detection model is HerdNet, use dot annotator, else use box annotator | |
if detection_model.__class__.__name__.__contains__("HerdNet"): | |
annotator = dot_annotator | |
# Herdnet receives both clf and det confidence thresholds | |
results_det = detection_model.single_image_detection(input_img, | |
img_path=img_index, | |
det_conf_thres=det_conf_thres, | |
clf_conf_thres=clf_conf_thres) | |
else: | |
annotator = box_annotator | |
results_det = detection_model.single_image_detection(input_img, | |
img_path=img_index, | |
det_conf_thres = det_conf_thres) | |
if classification_model is not None: | |
labels = [] | |
for i, (xyxy, det_id) in enumerate(zip(results_det["detections"].xyxy, results_det["detections"].class_id)): | |
# Only run classifier when detection class is animal | |
if det_id == 0: | |
cropped_image = sv.crop_image(image=input_img, xyxy=xyxy) | |
results_clf = classification_model.single_image_classification(cropped_image) | |
labels.append("{} {:.2f}".format(results_clf["prediction"] if results_clf["confidence"] > clf_conf_thres else "Unknown", | |
results_clf["confidence"])) | |
else: | |
labels.append(results_det["labels"][i]) | |
else: | |
labels = results_det["labels"] | |
annotated_img = lab_annotator.annotate( | |
scene=annotator.annotate( | |
scene=input_img, | |
detections=results_det["detections"], | |
), | |
detections=results_det["detections"], | |
labels=labels, | |
) | |
return annotated_img | |
def batch_detection(zip_file, timelapse, det_conf_thres): | |
"""Perform detection on a batch of images from a zip file and return path to results JSON. | |
Args: | |
zip_file (File): Zip file containing images. | |
det_conf_thres (float): Confidence threshold for detection. | |
timelapse (boolean): Flag to output JSON for timelapse. | |
clf_conf_thres (float): Confidence threshold for classification. | |
Returns: | |
json_save_path (str): Path to the JSON file containing detection results. | |
""" | |
# Clean the temp folder if it contains files | |
extract_path = os.path.join("..","temp","zip_upload") | |
if os.path.exists(extract_path): | |
shutil.rmtree(extract_path) | |
os.makedirs(extract_path) | |
json_save_path = os.path.join(extract_path, "results.json") | |
with ZipFile(zip_file.name) as zfile: | |
zfile.extractall(extract_path) | |
# Check the contents of the extracted folder | |
extracted_files = os.listdir(extract_path) | |
if len(extracted_files) == 1 and os.path.isdir(os.path.join(extract_path, extracted_files[0])): | |
tgt_folder_path = os.path.join(extract_path, extracted_files[0]) | |
else: | |
tgt_folder_path = extract_path | |
# If the detection model is HerdNet set batch_size to 1 | |
if detection_model.__class__.__name__.__contains__("HerdNet"): | |
det_results = detection_model.batch_image_detection(tgt_folder_path, batch_size=1, det_conf_thres=det_conf_thres, id_strip=tgt_folder_path) | |
else: | |
det_results = detection_model.batch_image_detection(tgt_folder_path, batch_size=16, det_conf_thres=det_conf_thres, id_strip=tgt_folder_path) | |
if classification_model is not None: | |
clf_dataset = pw_data.DetectionCrops( | |
det_results, | |
transform=pw_trans.Classification_Inference_Transform(target_size=224), | |
path_head=tgt_folder_path | |
) | |
clf_loader = DataLoader(clf_dataset, batch_size=32, shuffle=False, | |
pin_memory=True, num_workers=4, drop_last=False) | |
clf_results = classification_model.batch_image_classification(clf_loader, id_strip=tgt_folder_path) | |
if timelapse: | |
json_save_path = json_save_path.replace(".json", "_timelapse.json") | |
pw_utils.save_detection_classification_timelapse_json(det_results=det_results, | |
clf_results=clf_results, | |
det_categories=detection_model.CLASS_NAMES, | |
clf_categories=classification_model.CLASS_NAMES, | |
output_path=json_save_path) | |
else: | |
pw_utils.save_detection_classification_json(det_results=det_results, | |
clf_results=clf_results, | |
det_categories=detection_model.CLASS_NAMES, | |
clf_categories=classification_model.CLASS_NAMES, | |
output_path=json_save_path) | |
else: | |
if timelapse: | |
json_save_path = json_save_path.replace(".json", "_timelapse.json") | |
pw_utils.save_detection_timelapse_json(det_results, json_save_path, categories=detection_model.CLASS_NAMES) | |
elif detection_model.__class__.__name__.__contains__("HerdNet"): | |
pw_utils.save_detection_json_as_dots(det_results, json_save_path, categories=detection_model.CLASS_NAMES) | |
else: | |
pw_utils.save_detection_json(det_results, json_save_path, categories=detection_model.CLASS_NAMES) | |
return json_save_path | |
def batch_path_detection(tgt_folder_path, det_conf_thres): | |
"""Perform detection on a batch of images from a zip file and return path to results JSON. | |
Args: | |
tgt_folder_path (str): path to the folder containing the images. | |
det_conf_thres (float): Confidence threshold for detection. | |
Returns: | |
json_save_path (str): Path to the JSON file containing detection results. | |
""" | |
json_save_path = os.path.join(tgt_folder_path, "results.json") | |
det_results = detection_model.batch_image_detection(tgt_folder_path, det_conf_thres=det_conf_thres, id_strip=tgt_folder_path) | |
if detection_model.__class__.__name__.__contains__("HerdNet"): | |
pw_utils.save_detection_json_as_dots(det_results, json_save_path, categories=detection_model.CLASS_NAMES) | |
else: | |
pw_utils.save_detection_json(det_results, json_save_path, categories=detection_model.CLASS_NAMES) | |
return json_save_path | |
def video_detection(video, det_conf_thres, clf_conf_thres, target_fps, codec): | |
"""Perform detection on a video and return path to processed video. | |
Args: | |
video (str): Video source path. | |
det_conf_thres (float): Confidence threshold for detection. | |
clf_conf_thres (float): Confidence threshold for classification. | |
""" | |
def callback(frame, index): | |
annotated_frame = single_image_detection(frame, | |
img_index=index, | |
det_conf_thres=det_conf_thres, | |
clf_conf_thres=clf_conf_thres) | |
return annotated_frame | |
target_path = os.path.join("..","temp","video_detection.mp4") | |
pw_utils.process_video(source_path=video, target_path=target_path, | |
callback=callback, target_fps=int(target_fps), codec=codec) | |
return target_path | |
# Building Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("# Pytorch-Wildlife Demo.") | |
with gr.Row(): | |
det_drop = gr.Dropdown( | |
["None", "MegaDetectorV5", "MegaDetectorV6", "HerdNet General", "HerdNet Ennedi"], | |
label="Detection model", | |
info="Will add more detection models!", | |
value="None" # Default | |
) | |
det_version = gr.Dropdown( | |
["None"], | |
label="Model version", | |
info="Select the version of the model", | |
value="None", | |
) | |
with gr.Column(): | |
clf_drop = gr.Dropdown( | |
["None", "AI4GOpossum", "AI4GAmazonRainforest", "AI4GSnapshotSerengeti", "CustomWeights"], | |
interactive=True, | |
label="Classification model", | |
info="Will add more classification models!", | |
visible=False, | |
value="None" | |
) | |
custom_weights_path = gr.Textbox(label="Custom Weights Path", visible=False, interactive=True, placeholder="./weights/my_weight.pt") | |
custom_weights_class = gr.Textbox(label="Custom Weights Class", visible=False, interactive=True, placeholder="{1:'ocelot', 2:'cow', 3:'bear'}") | |
load_but = gr.Button("Load Models!") | |
load_out = gr.Text("NO MODEL LOADED!!", label="Loaded models:") | |
def update_ui_elements(det_model): | |
if det_model == "MegaDetectorV6": | |
return gr.Dropdown(choices=["MDV6-yolov9-c", "MDV6-yolov9-e", "MDV6-yolov10-c", "MDV6-yolov10-e", "MDV6-rtdetr-c"], interactive=True, label="Model version", value="MDV6-yolov9e"), gr.update(visible=True) | |
elif det_model == "MegaDetectorV5": | |
return gr.Dropdown(choices=["a", "b"], interactive=True, label="Model version", value="a"), gr.update(visible=True) | |
else: | |
return gr.Dropdown(choices=["None"], interactive=True, label="Model version", value="None"), gr.update(value="None", visible=False) | |
det_drop.change(update_ui_elements, det_drop, [det_version, clf_drop]) | |
def toggle_textboxes(model): | |
if model == "CustomWeights": | |
return gr.update(visible=True), gr.update(visible=True) | |
else: | |
return gr.update(visible=False), gr.update(visible=False) | |
clf_drop.change( | |
toggle_textboxes, | |
clf_drop, | |
[custom_weights_path, custom_weights_class] | |
) | |
with gr.Tab("Single Image Process"): | |
with gr.Row(): | |
with gr.Column(): | |
sgl_in = gr.Image(type="pil") | |
sgl_conf_sl_det = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2) | |
sgl_conf_sl_clf = gr.Slider(0, 1, label="Classification Confidence Threshold", value=0.7, visible=True) | |
sgl_out = gr.Image() | |
sgl_but = gr.Button("Detect Animals!") | |
with gr.Tab("Folder Separation"): | |
with gr.Row(): | |
with gr.Column(): | |
inp_path = gr.Textbox(label="Input path", placeholder="./data/") | |
out_path = gr.Textbox(label="Output path", placeholder="./output/") | |
bth_conf_fs = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2) | |
process_btn = gr.Button("Process Files") | |
bth_out2 = gr.File(label="Detection Results JSON.", height=200) | |
with gr.Column(): | |
process_files_button = gr.Button("Separate files") | |
process_result = gr.Text("Click on 'Separate files' once you see the JSON file", label="Separated files:") | |
process_btn.click(batch_path_detection, inputs=[inp_path, bth_conf_fs], outputs=bth_out2) | |
process_files_button.click(pw_utils.detection_folder_separation, inputs=[bth_out2, inp_path, out_path, bth_conf_fs], outputs=process_result) | |
with gr.Tab("Batch Image Process"): | |
with gr.Row(): | |
with gr.Column(): | |
bth_in = gr.File(label="Upload zip file.") | |
# The timelapse checkbox is only visible when the detection model is not HerdNet | |
chck_timelapse = gr.Checkbox(label="Generate timelapse JSON", visible=False) | |
bth_conf_sl = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2) | |
bth_out = gr.File(label="Detection Results JSON.", height=200) | |
bth_but = gr.Button("Detect Animals!") | |
with gr.Tab("Single Video Process"): | |
with gr.Row(): | |
with gr.Column(): | |
vid_in = gr.Video(label="Upload a video.") | |
vid_conf_sl_det = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2) | |
vid_conf_sl_clf = gr.Slider(0, 1, label="Classification Confidence Threshold", value=0.7) | |
vid_fr = gr.Dropdown([5, 10, 30], label="Output video framerate", value=30) | |
vid_enc = gr.Dropdown( | |
["mp4v", "avc1"], | |
label="Video encoder", | |
info="mp4v is default, av1c is faster (needs conda install opencv)", | |
value="mp4v" | |
) | |
vid_out = gr.Video() | |
vid_but = gr.Button("Detect Animals!") | |
# Show timelapsed checkbox only when detection model is not HerdNet | |
det_drop.change( | |
lambda model: gr.update(visible=True) if "HerdNet" not in model else gr.update(visible=False), | |
det_drop, | |
[chck_timelapse] | |
) | |
load_but.click(load_models, inputs=[det_drop, det_version, clf_drop, custom_weights_path, custom_weights_class], outputs=load_out) | |
sgl_but.click(single_image_detection, inputs=[sgl_in, sgl_conf_sl_det, sgl_conf_sl_clf], outputs=sgl_out) | |
bth_but.click(batch_detection, inputs=[bth_in, chck_timelapse, bth_conf_sl], outputs=bth_out) | |
vid_but.click(video_detection, inputs=[vid_in, vid_conf_sl_det, vid_conf_sl_clf, vid_fr, vid_enc], outputs=vid_out) | |
if __name__ == "__main__": | |
demo.queue() | |
demo.launch() | |