Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Upload gradio_demo.py
Browse filesmegadetectorv6 updates
- gradio_demo.py +346 -0
gradio_demo.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
2 |
+
# Licensed under the MIT License.
|
3 |
+
|
4 |
+
""" Gradio Demo for image detection"""
|
5 |
+
|
6 |
+
# Importing necessary basic libraries and modules
|
7 |
+
import os
|
8 |
+
|
9 |
+
# PyTorch imports
|
10 |
+
import torch
|
11 |
+
from torch.utils.data import DataLoader
|
12 |
+
|
13 |
+
# Importing the model, dataset, transformations and utility functions from PytorchWildlife
|
14 |
+
from PytorchWildlife.models import detection as pw_detection
|
15 |
+
from PytorchWildlife import utils as pw_utils
|
16 |
+
|
17 |
+
# Importing basic libraries
|
18 |
+
import shutil
|
19 |
+
import time
|
20 |
+
from PIL import Image
|
21 |
+
import supervision as sv
|
22 |
+
import gradio as gr
|
23 |
+
from zipfile import ZipFile
|
24 |
+
import numpy as np
|
25 |
+
import ast
|
26 |
+
|
27 |
+
# Importing the models, dataset, transformations, and utility functions from PytorchWildlife
|
28 |
+
from PytorchWildlife.models import classification as pw_classification
|
29 |
+
from PytorchWildlife.data import transforms as pw_trans
|
30 |
+
from PytorchWildlife.data import datasets as pw_data
|
31 |
+
|
32 |
+
# Setting the device to use for computations ('cuda' indicates GPU)
|
33 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
+
# Initializing a supervision box annotator for visualizing detections
|
35 |
+
dot_annotator = sv.DotAnnotator(radius=6)
|
36 |
+
box_annotator = sv.BoxAnnotator(thickness=4)
|
37 |
+
lab_annotator = sv.LabelAnnotator(text_color=sv.Color.BLACK, text_thickness=4, text_scale=2)
|
38 |
+
# Create a temp folder
|
39 |
+
os.makedirs(os.path.join("..","temp"), exist_ok=True) # ASK: Why do we need this?
|
40 |
+
|
41 |
+
# Initializing the detection and classification models
|
42 |
+
detection_model = None
|
43 |
+
classification_model = None
|
44 |
+
|
45 |
+
# Defining functions for different detection scenarios
|
46 |
+
def load_models(det, version, clf, wpath=None, wclass=None):
|
47 |
+
|
48 |
+
global detection_model, classification_model
|
49 |
+
if det != "None":
|
50 |
+
if det == "HerdNet General":
|
51 |
+
detection_model = pw_detection.HerdNet(device=DEVICE)
|
52 |
+
elif det == "HerdNet Ennedi":
|
53 |
+
detection_model = pw_detection.HerdNet(device=DEVICE, version="ennedi")
|
54 |
+
else:
|
55 |
+
detection_model = pw_detection.__dict__[det](device=DEVICE, pretrained=True, version=version)
|
56 |
+
else:
|
57 |
+
detection_model = None
|
58 |
+
return "NO MODEL LOADED!!"
|
59 |
+
|
60 |
+
if clf != "None":
|
61 |
+
# Create an exception for custom weights
|
62 |
+
if clf == "CustomWeights":
|
63 |
+
if (wpath is not None) and (wclass is not None):
|
64 |
+
wclass = ast.literal_eval(wclass)
|
65 |
+
classification_model = pw_classification.__dict__[clf](weights=wpath, class_names=wclass, device=DEVICE)
|
66 |
+
else:
|
67 |
+
classification_model = pw_classification.__dict__[clf](device=DEVICE, pretrained=True)
|
68 |
+
else:
|
69 |
+
classification_model = None
|
70 |
+
|
71 |
+
return "Loaded Detector: {}. Version: {}. Loaded Classifier: {}".format(det, version, clf)
|
72 |
+
|
73 |
+
|
74 |
+
def single_image_detection(input_img, det_conf_thres, clf_conf_thres, img_index=None):
|
75 |
+
"""Performs detection on a single image and returns an annotated image.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
input_img (PIL.Image): Input image in PIL.Image format defaulted by Gradio.
|
79 |
+
det_conf_thres (float): Confidence threshold for detection.
|
80 |
+
clf_conf_thres (float): Confidence threshold for classification.
|
81 |
+
img_index: Image index identifier.
|
82 |
+
Returns:
|
83 |
+
annotated_img (PIL.Image.Image): Annotated image with bounding box instances.
|
84 |
+
"""
|
85 |
+
|
86 |
+
input_img = np.array(input_img)
|
87 |
+
# If the detection model is HerdNet, use dot annotator, else use box annotator
|
88 |
+
if detection_model.__class__.__name__.__contains__("HerdNet"):
|
89 |
+
annotator = dot_annotator
|
90 |
+
# Herdnet receives both clf and det confidence thresholds
|
91 |
+
results_det = detection_model.single_image_detection(input_img,
|
92 |
+
img_path=img_index,
|
93 |
+
det_conf_thres=det_conf_thres,
|
94 |
+
clf_conf_thres=clf_conf_thres)
|
95 |
+
else:
|
96 |
+
annotator = box_annotator
|
97 |
+
results_det = detection_model.single_image_detection(input_img,
|
98 |
+
img_path=img_index,
|
99 |
+
det_conf_thres = det_conf_thres)
|
100 |
+
|
101 |
+
if classification_model is not None:
|
102 |
+
labels = []
|
103 |
+
for i, (xyxy, det_id) in enumerate(zip(results_det["detections"].xyxy, results_det["detections"].class_id)):
|
104 |
+
# Only run classifier when detection class is animal
|
105 |
+
if det_id == 0:
|
106 |
+
cropped_image = sv.crop_image(image=input_img, xyxy=xyxy)
|
107 |
+
results_clf = classification_model.single_image_classification(cropped_image)
|
108 |
+
labels.append("{} {:.2f}".format(results_clf["prediction"] if results_clf["confidence"] > clf_conf_thres else "Unknown",
|
109 |
+
results_clf["confidence"]))
|
110 |
+
else:
|
111 |
+
labels.append(results_det["labels"][i])
|
112 |
+
else:
|
113 |
+
labels = results_det["labels"]
|
114 |
+
|
115 |
+
annotated_img = lab_annotator.annotate(
|
116 |
+
scene=annotator.annotate(
|
117 |
+
scene=input_img,
|
118 |
+
detections=results_det["detections"],
|
119 |
+
),
|
120 |
+
detections=results_det["detections"],
|
121 |
+
labels=labels,
|
122 |
+
)
|
123 |
+
return annotated_img
|
124 |
+
|
125 |
+
def batch_detection(zip_file, timelapse, det_conf_thres):
|
126 |
+
"""Perform detection on a batch of images from a zip file and return path to results JSON.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
zip_file (File): Zip file containing images.
|
130 |
+
det_conf_thres (float): Confidence threshold for detection.
|
131 |
+
timelapse (boolean): Flag to output JSON for timelapse.
|
132 |
+
clf_conf_thres (float): Confidence threshold for classification.
|
133 |
+
|
134 |
+
Returns:
|
135 |
+
json_save_path (str): Path to the JSON file containing detection results.
|
136 |
+
"""
|
137 |
+
# Clean the temp folder if it contains files
|
138 |
+
extract_path = os.path.join("..","temp","zip_upload")
|
139 |
+
if os.path.exists(extract_path):
|
140 |
+
shutil.rmtree(extract_path)
|
141 |
+
os.makedirs(extract_path)
|
142 |
+
|
143 |
+
json_save_path = os.path.join(extract_path, "results.json")
|
144 |
+
with ZipFile(zip_file.name) as zfile:
|
145 |
+
zfile.extractall(extract_path)
|
146 |
+
# Check the contents of the extracted folder
|
147 |
+
extracted_files = os.listdir(extract_path)
|
148 |
+
|
149 |
+
if len(extracted_files) == 1 and os.path.isdir(os.path.join(extract_path, extracted_files[0])):
|
150 |
+
tgt_folder_path = os.path.join(extract_path, extracted_files[0])
|
151 |
+
else:
|
152 |
+
tgt_folder_path = extract_path
|
153 |
+
# If the detection model is HerdNet set batch_size to 1
|
154 |
+
if detection_model.__class__.__name__.__contains__("HerdNet"):
|
155 |
+
det_results = detection_model.batch_image_detection(tgt_folder_path, batch_size=1, det_conf_thres=det_conf_thres, id_strip=tgt_folder_path)
|
156 |
+
else:
|
157 |
+
det_results = detection_model.batch_image_detection(tgt_folder_path, batch_size=16, det_conf_thres=det_conf_thres, id_strip=tgt_folder_path)
|
158 |
+
|
159 |
+
if classification_model is not None:
|
160 |
+
clf_dataset = pw_data.DetectionCrops(
|
161 |
+
det_results,
|
162 |
+
transform=pw_trans.Classification_Inference_Transform(target_size=224),
|
163 |
+
path_head=tgt_folder_path
|
164 |
+
)
|
165 |
+
clf_loader = DataLoader(clf_dataset, batch_size=32, shuffle=False,
|
166 |
+
pin_memory=True, num_workers=4, drop_last=False)
|
167 |
+
clf_results = classification_model.batch_image_classification(clf_loader, id_strip=tgt_folder_path)
|
168 |
+
if timelapse:
|
169 |
+
json_save_path = json_save_path.replace(".json", "_timelapse.json")
|
170 |
+
pw_utils.save_detection_classification_timelapse_json(det_results=det_results,
|
171 |
+
clf_results=clf_results,
|
172 |
+
det_categories=detection_model.CLASS_NAMES,
|
173 |
+
clf_categories=classification_model.CLASS_NAMES,
|
174 |
+
output_path=json_save_path)
|
175 |
+
else:
|
176 |
+
pw_utils.save_detection_classification_json(det_results=det_results,
|
177 |
+
clf_results=clf_results,
|
178 |
+
det_categories=detection_model.CLASS_NAMES,
|
179 |
+
clf_categories=classification_model.CLASS_NAMES,
|
180 |
+
output_path=json_save_path)
|
181 |
+
else:
|
182 |
+
if timelapse:
|
183 |
+
json_save_path = json_save_path.replace(".json", "_timelapse.json")
|
184 |
+
pw_utils.save_detection_timelapse_json(det_results, json_save_path, categories=detection_model.CLASS_NAMES)
|
185 |
+
elif detection_model.__class__.__name__.__contains__("HerdNet"):
|
186 |
+
pw_utils.save_detection_json_as_dots(det_results, json_save_path, categories=detection_model.CLASS_NAMES)
|
187 |
+
else:
|
188 |
+
pw_utils.save_detection_json(det_results, json_save_path, categories=detection_model.CLASS_NAMES)
|
189 |
+
|
190 |
+
return json_save_path
|
191 |
+
|
192 |
+
def batch_path_detection(tgt_folder_path, det_conf_thres):
|
193 |
+
"""Perform detection on a batch of images from a zip file and return path to results JSON.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
tgt_folder_path (str): path to the folder containing the images.
|
197 |
+
det_conf_thres (float): Confidence threshold for detection.
|
198 |
+
Returns:
|
199 |
+
json_save_path (str): Path to the JSON file containing detection results.
|
200 |
+
"""
|
201 |
+
|
202 |
+
json_save_path = os.path.join(tgt_folder_path, "results.json")
|
203 |
+
det_results = detection_model.batch_image_detection(tgt_folder_path, det_conf_thres=det_conf_thres, id_strip=tgt_folder_path)
|
204 |
+
if detection_model.__class__.__name__.__contains__("HerdNet"):
|
205 |
+
pw_utils.save_detection_json_as_dots(det_results, json_save_path, categories=detection_model.CLASS_NAMES)
|
206 |
+
else:
|
207 |
+
pw_utils.save_detection_json(det_results, json_save_path, categories=detection_model.CLASS_NAMES)
|
208 |
+
|
209 |
+
return json_save_path
|
210 |
+
|
211 |
+
|
212 |
+
def video_detection(video, det_conf_thres, clf_conf_thres, target_fps, codec):
|
213 |
+
"""Perform detection on a video and return path to processed video.
|
214 |
+
|
215 |
+
Args:
|
216 |
+
video (str): Video source path.
|
217 |
+
det_conf_thres (float): Confidence threshold for detection.
|
218 |
+
clf_conf_thres (float): Confidence threshold for classification.
|
219 |
+
|
220 |
+
"""
|
221 |
+
def callback(frame, index):
|
222 |
+
annotated_frame = single_image_detection(frame,
|
223 |
+
img_index=index,
|
224 |
+
det_conf_thres=det_conf_thres,
|
225 |
+
clf_conf_thres=clf_conf_thres)
|
226 |
+
return annotated_frame
|
227 |
+
|
228 |
+
target_path = os.path.join("..","temp","video_detection.mp4")
|
229 |
+
pw_utils.process_video(source_path=video, target_path=target_path,
|
230 |
+
callback=callback, target_fps=int(target_fps), codec=codec)
|
231 |
+
return target_path
|
232 |
+
|
233 |
+
# Building Gradio UI
|
234 |
+
|
235 |
+
with gr.Blocks() as demo:
|
236 |
+
gr.Markdown("# Pytorch-Wildlife Demo.")
|
237 |
+
with gr.Row():
|
238 |
+
det_drop = gr.Dropdown(
|
239 |
+
["None", "MegaDetectorV5", "MegaDetectorV6", "HerdNet General", "HerdNet Ennedi"],
|
240 |
+
label="Detection model",
|
241 |
+
info="Will add more detection models!",
|
242 |
+
value="None" # Default
|
243 |
+
)
|
244 |
+
det_version = gr.Dropdown(
|
245 |
+
["None"],
|
246 |
+
label="Model version",
|
247 |
+
info="Select the version of the model",
|
248 |
+
value="None",
|
249 |
+
)
|
250 |
+
|
251 |
+
with gr.Column():
|
252 |
+
clf_drop = gr.Dropdown(
|
253 |
+
["None", "AI4GOpossum", "AI4GAmazonRainforest", "AI4GSnapshotSerengeti", "CustomWeights"],
|
254 |
+
interactive=True,
|
255 |
+
label="Classification model",
|
256 |
+
info="Will add more classification models!",
|
257 |
+
visible=False,
|
258 |
+
value="None"
|
259 |
+
)
|
260 |
+
custom_weights_path = gr.Textbox(label="Custom Weights Path", visible=False, interactive=True, placeholder="./weights/my_weight.pt")
|
261 |
+
custom_weights_class = gr.Textbox(label="Custom Weights Class", visible=False, interactive=True, placeholder="{1:'ocelot', 2:'cow', 3:'bear'}")
|
262 |
+
load_but = gr.Button("Load Models!")
|
263 |
+
load_out = gr.Text("NO MODEL LOADED!!", label="Loaded models:")
|
264 |
+
|
265 |
+
def update_ui_elements(det_model):
|
266 |
+
if det_model == "MegaDetectorV6":
|
267 |
+
return gr.Dropdown(choices=["MDV6-yolov9-c", "MDV6-yolov9-e", "MDV6-yolov10-c", "MDV6-yolov10-e", "MDV6-rtdetr-c"], interactive=True, label="Model version", value="MDV6-yolov9e"), gr.update(visible=True)
|
268 |
+
elif det_model == "MegaDetectorV5":
|
269 |
+
return gr.Dropdown(choices=["a", "b"], interactive=True, label="Model version", value="a"), gr.update(visible=True)
|
270 |
+
else:
|
271 |
+
return gr.Dropdown(choices=["None"], interactive=True, label="Model version", value="None"), gr.update(value="None", visible=False)
|
272 |
+
|
273 |
+
det_drop.change(update_ui_elements, det_drop, [det_version, clf_drop])
|
274 |
+
|
275 |
+
def toggle_textboxes(model):
|
276 |
+
if model == "CustomWeights":
|
277 |
+
return gr.update(visible=True), gr.update(visible=True)
|
278 |
+
else:
|
279 |
+
return gr.update(visible=False), gr.update(visible=False)
|
280 |
+
|
281 |
+
clf_drop.change(
|
282 |
+
toggle_textboxes,
|
283 |
+
clf_drop,
|
284 |
+
[custom_weights_path, custom_weights_class]
|
285 |
+
)
|
286 |
+
|
287 |
+
with gr.Tab("Single Image Process"):
|
288 |
+
with gr.Row():
|
289 |
+
with gr.Column():
|
290 |
+
sgl_in = gr.Image(type="pil")
|
291 |
+
sgl_conf_sl_det = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2)
|
292 |
+
sgl_conf_sl_clf = gr.Slider(0, 1, label="Classification Confidence Threshold", value=0.7, visible=True)
|
293 |
+
sgl_out = gr.Image()
|
294 |
+
sgl_but = gr.Button("Detect Animals!")
|
295 |
+
with gr.Tab("Folder Separation"):
|
296 |
+
with gr.Row():
|
297 |
+
with gr.Column():
|
298 |
+
inp_path = gr.Textbox(label="Input path", placeholder="./data/")
|
299 |
+
out_path = gr.Textbox(label="Output path", placeholder="./output/")
|
300 |
+
bth_conf_fs = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2)
|
301 |
+
process_btn = gr.Button("Process Files")
|
302 |
+
bth_out2 = gr.File(label="Detection Results JSON.", height=200)
|
303 |
+
with gr.Column():
|
304 |
+
process_files_button = gr.Button("Separate files")
|
305 |
+
process_result = gr.Text("Click on 'Separate files' once you see the JSON file", label="Separated files:")
|
306 |
+
process_btn.click(batch_path_detection, inputs=[inp_path, bth_conf_fs], outputs=bth_out2)
|
307 |
+
process_files_button.click(pw_utils.detection_folder_separation, inputs=[bth_out2, inp_path, out_path, bth_conf_fs], outputs=process_result)
|
308 |
+
with gr.Tab("Batch Image Process"):
|
309 |
+
with gr.Row():
|
310 |
+
with gr.Column():
|
311 |
+
bth_in = gr.File(label="Upload zip file.")
|
312 |
+
# The timelapse checkbox is only visible when the detection model is not HerdNet
|
313 |
+
chck_timelapse = gr.Checkbox(label="Generate timelapse JSON", visible=False)
|
314 |
+
bth_conf_sl = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2)
|
315 |
+
bth_out = gr.File(label="Detection Results JSON.", height=200)
|
316 |
+
bth_but = gr.Button("Detect Animals!")
|
317 |
+
with gr.Tab("Single Video Process"):
|
318 |
+
with gr.Row():
|
319 |
+
with gr.Column():
|
320 |
+
vid_in = gr.Video(label="Upload a video.")
|
321 |
+
vid_conf_sl_det = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2)
|
322 |
+
vid_conf_sl_clf = gr.Slider(0, 1, label="Classification Confidence Threshold", value=0.7)
|
323 |
+
vid_fr = gr.Dropdown([5, 10, 30], label="Output video framerate", value=30)
|
324 |
+
vid_enc = gr.Dropdown(
|
325 |
+
["mp4v", "avc1"],
|
326 |
+
label="Video encoder",
|
327 |
+
info="mp4v is default, av1c is faster (needs conda install opencv)",
|
328 |
+
value="mp4v"
|
329 |
+
)
|
330 |
+
vid_out = gr.Video()
|
331 |
+
vid_but = gr.Button("Detect Animals!")
|
332 |
+
|
333 |
+
# Show timelapsed checkbox only when detection model is not HerdNet
|
334 |
+
det_drop.change(
|
335 |
+
lambda model: gr.update(visible=True) if "HerdNet" not in model else gr.update(visible=False),
|
336 |
+
det_drop,
|
337 |
+
[chck_timelapse]
|
338 |
+
)
|
339 |
+
|
340 |
+
load_but.click(load_models, inputs=[det_drop, det_version, clf_drop, custom_weights_path, custom_weights_class], outputs=load_out)
|
341 |
+
sgl_but.click(single_image_detection, inputs=[sgl_in, sgl_conf_sl_det, sgl_conf_sl_clf], outputs=sgl_out)
|
342 |
+
bth_but.click(batch_detection, inputs=[bth_in, chck_timelapse, bth_conf_sl], outputs=bth_out)
|
343 |
+
vid_but.click(video_detection, inputs=[vid_in, vid_conf_sl_det, vid_conf_sl_clf, vid_fr, vid_enc], outputs=vid_out)
|
344 |
+
|
345 |
+
if __name__ == "__main__":
|
346 |
+
demo.launch(share=True)
|