Spaces:
Runtime error
Runtime error
File size: 2,256 Bytes
a334812 8dc740e a334812 031192b a334812 031192b a334812 74e721c a334812 74e721c 031192b 74e721c a334812 8dc740e a334812 031192b a334812 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import torch
import gradio as gr
from transformers import GPT2LMHeadModel, GPT2Tokenizer
from googletrans import Translator
translator = Translator()
tokenizer = GPT2Tokenizer.from_pretrained("sberbank-ai/mGPT-armenian")
model = GPT2LMHeadModel.from_pretrained("sberbank-ai/mGPT-armenian")
#model.cuda()
#model.eval()
description = "Multilingual generation with mGPT"
title = "Generate your own example"
examples = [["""Երեւանից ծրագրավորողները ներկայացրել են նոր գործարք: Այն կոչվում է""", "Նորություններ. Բրազիլացի գիտնականները հայտնաբերել են Ուութլանդի արեւմուտքում ապրող գաճաճ միաեղջյուրների հազվագյուտ տեսակին:"]]
article = (
"<p style='text-align: center'>"
"<a href='https://github.com/ai-forever/mgpt'>GitHub</a> "
"</p>"
)
device = "cuda" if torch.cuda.is_available() else "cpu"
fp16 = device != 'cpu'
def transl(text, src='en', dest='hy' ):
return translator.translate(text, src=src, dest=dest).text
def generate(prompt: str, length=500):
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
out = model.generate(input_ids,
min_length=length,
max_length=length,
top_p=0.95,
top_k=0,
temperature=0.9,
no_repeat_ngram_size=5
)
generated_text = list(map(tokenizer.decode, out))[0]
return generated_text #+ '\n\n'+transl(generated_text, src='hy', dest='en')
length = gr.inputs.Slider(200, 1000)
contexto = gr.inputs.Textbox(lines=10, placeholder="Write your text here")
interface = gr.Interface.load("huggingface/sberbank-ai/mGPT-armenian",
description=description,
examples=examples,
fn=generate,
inputs=[contexto,length],#"text",
outputs='text',
thumbnail = 'https://habrastorage.org/r/w1560/getpro/habr/upload_files/26a/fa1/3e1/26afa13e1d1a56f54c7b0356761af7b8.png',
theme = "peach",
article = article
)
interface.launch(enable_queue=True) |