import os os.system("pip install git+https://github.com/ai-forever/ScrabbleGAN") import numpy as np import cv2 import gradio as gr from huggingface_hub import hf_hub_download from scgan.config import Config from scgan.generate_images import ImgGenerator def download_weights(repo_id): char_map_path = hf_hub_download(repo_id, "char_map.pkl") weights_path = hf_hub_download(repo_id, "model_checkpoint_epoch_200.pth.tar") return char_map_path, weights_path def get_text_from_image(img): COLOR_MIN = np.array([0, 0, 0],np.uint8) COLOR_MAX = np.array([250,250,160],np.uint8) img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) text_mask = cv2.inRange(img, COLOR_MIN, COLOR_MAX).astype(bool) img = cv2.cvtColor(img, cv2.COLOR_HSV2RGB) bg = np.ones(img.shape, dtype=np.uint8) * 255 bg[text_mask] = img[text_mask] return bg def split_text_to_rows(text, n): # https://stackoverflow.com/a/6187258 l = text.split() return [' '.join(l[x:x+n]) for x in range(0, len(l), n)] def split_text_to_rows_by_chars(text, n): list_of_rows = [] for i in range(0, len(text), n): list_of_rows.append(text[i:n+i].strip()) return list_of_rows def remove_right_padding(img, len_text, char_w=32): # char_w for a standard ScrabbleGAN char width return img[:, :len_text*char_w] def split_list2batches(lst, batch_size): """Split list of images to list of bacthes.""" return [lst[i:i+batch_size] for i in range(0, len(lst), batch_size)] def get_canvas_size(images, row_width, left_pad): canvas_width = 0 canvas_height = 0 for image in images: h, w = image.shape[:2] canvas_height += h*row_width if w > canvas_width: canvas_width = w canvas_width += left_pad # expand canvas to the height of the last image # (to correct the effect of rows shrinking) h = images[-1].shape[0] canvas_height += h - h*row_width return int(canvas_height), canvas_width def predict(text): if text.find(NEW_LINE_SYMB) == -1: texts = split_text_to_rows_by_chars(text, CHARS_IN_ROW) else: texts = [row.strip() for row in text.split(NEW_LINE_SYMB)] texts_batches = split_list2batches(texts, BATCH_SIZE) images_on_white = [] for texts_batch in texts_batches: imgs, texts_on_image = GENERATOR.generate(word_list=texts_batch) for img, text_on_image in zip(imgs, texts_on_image): cropped_image = remove_right_padding( img, len(text_on_image)) images_on_white.append( get_text_from_image(cropped_image)) canvas_height, canvas_width = get_canvas_size( images_on_white, ROW_WIDTH, LEFT_PAD) canvas = np.zeros((canvas_height, canvas_width, 3), dtype=np.uint8) canvas.fill(255) start_draw = 0 for image_on_white in images_on_white: h, w = image_on_white.shape[:2] canvas[start_draw:start_draw+h, LEFT_PAD:LEFT_PAD+w] = image_on_white start_draw += int(h * ROW_WIDTH) return canvas CHAR_MAP_PATH, WEIGHTS_PATH = download_weights("sberbank-ai/scrabblegan-peter") GENERATOR = ImgGenerator( checkpt_path=WEIGHTS_PATH, config=Config, char_map_path=CHAR_MAP_PATH ) BATCH_SIZE = 3 ROW_WIDTH = 0.7 LEFT_PAD = 10 WORDS_IN_ROW = 4 CHARS_IN_ROW = 40 NEW_LINE_SYMB = '{n}' gr.Interface( predict, inputs=gr.Textbox(label=f"Type your text (RU) to generate it on an image. The text will be automatically splitted on lines, or you can use a new line symbol {NEW_LINE_SYMB}"), outputs=gr.Image(label="Generated image"), title="Peter the Great handwritten image generation", ).launch()