Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,114 Bytes
d90acf0 0a89e97 d90acf0 0a89e97 d90acf0 0a89e97 d90acf0 7f2245c d90acf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
from typing import List, Callable
# from googletrans import Translator
from deep_translator import GoogleTranslator
import random
from src.prompt_configs import PromptConfig, prefix
# translator = Translator()
translator = GoogleTranslator(source='auto', target='en')
def get_translation(text: str, dest: str = 'en') -> str:
return translator.translate(text)
# return translator.translate(text, dest=dest).text
def llm_generate_titles(
llm_generate: Callable[[str], str],
description: str,
prompt_config: PromptConfig,
) -> List[str]:
"""
Generate presentation slide titles using a language model.
Args:
llm_generate (Callable[[str], str]): Function to generate text using a language model.
description (str): Description of the presentation.
prompt_config (PromptConfig): Configuration for prompts.
Returns:
List[str]: List of generated slide titles.
"""
prompt = prompt_config.title_prompt.format(
description=description
)
titles_str = llm_generate(prompt)
titles = []
for title in titles_str.split("\n"):
sep_index = title.index('. ')
title = title.strip()[sep_index:]
title = title.replace('.', '')
title = title.replace('\n', '')
if prefix in title.lower():
title = title[
title.lower().index(prefix)+len(prefix):
]
titles.append(title)
return titles
def llm_generate_text(
llm_generate: Callable[[str], str],
description: str,
titles: List[str],
prompt_config: PromptConfig
) -> List[str]:
"""
Generate text for each slide title using a language model.
Args:
llm_generate (Callable[[str], str]): Function to generate text using a language model.
description (str): Description of the presentation.
titles (List[str]): List of slide titles.
prompt_config (PromptConfig): Configuration for prompts.
Returns:
List[str]: List of generated texts for each slide.
"""
texts = []
for title in titles:
query = prompt_config.text_prompt.format(description=description, title=title)
text = llm_generate(query)
if prefix in text.lower():
text = text[text.lower().index(prefix)+len(prefix):]
text = text.replace('\n', '')
texts.append(text)
return texts
def llm_generate_image_prompt(
llm_generate: Callable[[str], str],
description: str,
title: str,
prompt_config: PromptConfig
) -> str:
"""
Generate an image prompt for a slide using a language model and translate it.
Args:
llm_generate (Callable[[str], str]): Function to generate text using a language model.
description (str): Description of the presentation.
title (str): Slide title.
prompt_config (PromptConfig): Configuration for prompts.
Returns:
str: Translated image prompt.
"""
query = prompt_config.image_prompt.format(description=description, title=title)
prompt = llm_generate(query)
if prefix in prompt:
prompt = prompt[prompt.lower().index(prompt)+len(prompt):]
prompt = prompt.replace('\n', '')
return get_translation(prompt)
def llm_generate_background_prompt(
llm_generate: Callable[[str], str],
description: str,
title: str,
prompt_config: PromptConfig,
background_style: str = ''
) -> str:
"""
Generate a background prompt for a slide using a language model and translate it.
Args:
llm_generate (Callable[[str], str]): Function to generate text using a language model.
description (str): Description of the presentation.
title (str): Slide title.
prompt_config (PromptConfig): Configuration for prompts.
Returns:
str: Translated background prompt.
"""
query = prompt_config.background_prompt.format(description=description, title=title)
keywords = llm_generate(query)
background_prompt = f'{keywords}, {background_style}'
return get_translation(background_prompt) |