Spaces:
Running
on
Zero
Running
on
Zero
Update src/kandinsky.py
Browse files- src/kandinsky.py +95 -57
src/kandinsky.py
CHANGED
@@ -16,75 +16,113 @@ from fastapi import FastAPI, HTTPException
|
|
16 |
from pydantic import BaseModel
|
17 |
import base64
|
18 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
device_map = torch.device('cuda:0')
|
21 |
-
dtype_map = {
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
}
|
26 |
|
27 |
-
# Initialize the FastAPI app
|
28 |
-
app = FastAPI()
|
29 |
|
30 |
# Define the request model
|
31 |
-
class GenerateImageRequest(BaseModel):
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
# Define the response model
|
37 |
-
class GenerateImageResponse(BaseModel):
|
38 |
-
|
39 |
|
40 |
# Define the endpoint
|
41 |
-
@app.post("/k31/", response_model=GenerateImageResponse)
|
42 |
-
async def generate_image(request: GenerateImageRequest):
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
def api_k31_generate(prompt, width=1024, height=1024, url = "http://0.0.0.0:8188/k31/"):
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
-
|
71 |
-
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
-
|
79 |
-
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
|
85 |
-
# Run the FastAPI app
|
86 |
-
if __name__ == "__main__":
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
16 |
from pydantic import BaseModel
|
17 |
import base64
|
18 |
import requests
|
19 |
+
import spaces #[uncomment to use ZeroGPU]
|
20 |
+
from diffusers import DiffusionPipeline
|
21 |
+
import torch
|
22 |
+
|
23 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
+
model_repo_id = "kandinsky-community/kandinsky-3" #"stabilityai/sdxl-turbo" #Replace to the model you would like to use
|
25 |
+
|
26 |
+
if torch.cuda.is_available():
|
27 |
+
torch_dtype = torch.float16
|
28 |
+
else:
|
29 |
+
torch_dtype = torch.float32
|
30 |
+
|
31 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, variant="fp16", torch_dtype=torch_dtype)
|
32 |
+
pipe = pipe.to(device)
|
33 |
+
|
34 |
+
MAX_SEED = np.iinfo(np.int32).max
|
35 |
+
MAX_IMAGE_SIZE = 1024
|
36 |
+
|
37 |
+
@spaces.GPU #[uncomment to use ZeroGPU]
|
38 |
+
def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
39 |
+
|
40 |
+
if randomize_seed:
|
41 |
+
seed = random.randint(0, MAX_SEED)
|
42 |
+
|
43 |
+
generator = torch.Generator().manual_seed(seed)
|
44 |
+
|
45 |
+
image = pipe(
|
46 |
+
prompt = prompt,
|
47 |
+
negative_prompt = negative_prompt,
|
48 |
+
guidance_scale = guidance_scale,
|
49 |
+
num_inference_steps = num_inference_steps,
|
50 |
+
width = width,
|
51 |
+
height = height,
|
52 |
+
generator = generator
|
53 |
+
).images[0]
|
54 |
+
|
55 |
+
return image, seed
|
56 |
+
|
57 |
|
58 |
+
# device_map = torch.device('cuda:0')
|
59 |
+
# dtype_map = {
|
60 |
+
# 'unet': torch.float32,
|
61 |
+
# 'text_encoder': torch.float16,
|
62 |
+
# 'movq': torch.float32,
|
63 |
+
# }
|
64 |
|
65 |
+
# # Initialize the FastAPI app
|
66 |
+
# app = FastAPI()
|
67 |
|
68 |
# Define the request model
|
69 |
+
# class GenerateImageRequest(BaseModel):
|
70 |
+
# prompt: str
|
71 |
+
# width: Optional[int] = 1024
|
72 |
+
# height: Optional[int] = 1024
|
73 |
|
74 |
# Define the response model
|
75 |
+
# class GenerateImageResponse(BaseModel):
|
76 |
+
# image_base64: str
|
77 |
|
78 |
# Define the endpoint
|
79 |
+
# @app.post("/k31/", response_model=GenerateImageResponse)
|
80 |
+
# async def generate_image(request: GenerateImageRequest):
|
81 |
+
# try:
|
82 |
+
# # Generate the image using the pipeline
|
83 |
+
# pil_image = t2i_pipe(request.prompt, width=request.width, height=request.height, steps=50)[0]
|
84 |
+
|
85 |
+
# # Resize the image if necessary
|
86 |
+
# if pil_image.size != (request.width, request.height):
|
87 |
+
# pil_image = pil_image.resize((request.width, request.height))
|
88 |
|
89 |
+
# # Convert the PIL image to base64
|
90 |
+
# buffered = BytesIO()
|
91 |
+
# pil_image.save(buffered, format="PNG")
|
92 |
+
# image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
93 |
|
94 |
+
# # Return the response
|
95 |
+
# return GenerateImageResponse(image_base64=image_base64)
|
96 |
+
|
97 |
+
# except Exception as e:
|
98 |
+
# raise HTTPException(status_code=500, detail=str(e))
|
99 |
+
|
100 |
+
# def api_k31_generate(prompt, width=1024, height=1024, url = "http://0.0.0.0:8188/k31/"):
|
101 |
+
# # Define the text message and image parameters
|
102 |
+
# data = {
|
103 |
+
# "prompt": prompt,
|
104 |
+
# "width": width,
|
105 |
+
# "height": height
|
106 |
+
# }
|
107 |
|
108 |
+
# # Send the POST request
|
109 |
+
# response = requests.post(url, json=data)
|
110 |
|
111 |
+
# # Check if the request was successful
|
112 |
+
# if response.status_code == 200:
|
113 |
+
# # Extract the base64 encoded image from the response
|
114 |
+
# image_base64 = response.json()["image_base64"]
|
115 |
|
116 |
+
# # You can further process the image here, for example, decode it from base64
|
117 |
+
# decoded_image = Image.open(BytesIO(base64.b64decode(image_base64)))
|
118 |
|
119 |
+
# return decoded_image
|
120 |
+
# else:
|
121 |
+
# print("Error:", response.text)
|
122 |
|
123 |
+
# # Run the FastAPI app
|
124 |
+
# if __name__ == "__main__":
|
125 |
+
# t2i_pipe = get_T2I_pipeline(
|
126 |
+
# device_map, dtype_map,
|
127 |
+
# )
|
128 |
+
# uvicorn.run(app, host="0.0.0.0", port=8188)
|