Update app.py
Browse files
app.py
CHANGED
@@ -36,16 +36,23 @@ def generate_insights(df):
|
|
36 |
|
37 |
return insights
|
38 |
|
39 |
-
if df.empty:
|
40 |
-
st.error("The uploaded dataset is empty. Please upload a valid dataset.")
|
41 |
-
st.stop()
|
42 |
-
|
43 |
# RAG setup using Hugging Face summarization
|
44 |
def generate_query_summary(df, query):
|
45 |
summarizer = pipeline("summarization")
|
46 |
combined_text = " ".join(df.astype(str).apply(lambda x: " ".join(x), axis=1))
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Streamlit app
|
51 |
st.title("Employee Performance Dashboard")
|
@@ -77,4 +84,4 @@ if uploaded_file is not None:
|
|
77 |
st.markdown("#### Summary")
|
78 |
st.write(summary)
|
79 |
else:
|
80 |
-
st.info("Please upload a CSV file.")
|
|
|
36 |
|
37 |
return insights
|
38 |
|
|
|
|
|
|
|
|
|
39 |
# RAG setup using Hugging Face summarization
|
40 |
def generate_query_summary(df, query):
|
41 |
summarizer = pipeline("summarization")
|
42 |
combined_text = " ".join(df.astype(str).apply(lambda x: " ".join(x), axis=1))
|
43 |
+
|
44 |
+
# Truncate text to avoid token limit issues
|
45 |
+
max_input_length = 1024
|
46 |
+
if len(combined_text) > max_input_length:
|
47 |
+
combined_text = combined_text[:max_input_length]
|
48 |
+
|
49 |
+
try:
|
50 |
+
result = summarizer(query + " " + combined_text, max_length=100, min_length=30, do_sample=False)
|
51 |
+
return result[0]['summary_text']
|
52 |
+
except IndexError:
|
53 |
+
return "Error: Unable to generate a summary. Ensure the query and data are valid."
|
54 |
+
except Exception as e:
|
55 |
+
return f"Error during summarization: {e}"
|
56 |
|
57 |
# Streamlit app
|
58 |
st.title("Employee Performance Dashboard")
|
|
|
84 |
st.markdown("#### Summary")
|
85 |
st.write(summary)
|
86 |
else:
|
87 |
+
st.info("Please upload a CSV file.")
|