Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
def load_data(file):
|
7 |
+
try:
|
8 |
+
df = pd.read_csv(file)
|
9 |
+
return df
|
10 |
+
except Exception as e:
|
11 |
+
st.error(f"Error loading file: {e}")
|
12 |
+
return None
|
13 |
+
|
14 |
+
def generate_summary(df):
|
15 |
+
summary = {
|
16 |
+
'Column': df.columns,
|
17 |
+
'Data Type': [str(df[col].dtype) for col in df.columns],
|
18 |
+
'Non-Null Count': df.notnull().sum().values,
|
19 |
+
'Unique Values': [df[col].nunique() for col in df.columns],
|
20 |
+
'Sample Value': [df[col].iloc[0] if len(df[col]) > 0 else None for col in df.columns]
|
21 |
+
}
|
22 |
+
return pd.DataFrame(summary)
|
23 |
+
|
24 |
+
def generate_insights(df):
|
25 |
+
insights = []
|
26 |
+
|
27 |
+
# Example insights
|
28 |
+
if 'avg_training_score' in df.columns:
|
29 |
+
avg_score = df['avg_training_score'].mean()
|
30 |
+
insights.append(f"The average training score is {avg_score:.2f}. Consider additional training for employees below this score.")
|
31 |
+
|
32 |
+
if 'length_of_service' in df.columns:
|
33 |
+
experienced_employees = len(df[df['length_of_service'] > 5])
|
34 |
+
insights.append(f"{experienced_employees} employees have more than 5 years of service. Consider them for leadership roles.")
|
35 |
+
|
36 |
+
if 'awards_won' in df.columns:
|
37 |
+
award_winners = df['awards_won'].sum()
|
38 |
+
insights.append(f"A total of {award_winners} awards have been won by employees.")
|
39 |
+
|
40 |
+
return insights
|
41 |
+
|
42 |
+
# Streamlit app
|
43 |
+
st.title("Employee Performance Dashboard")
|
44 |
+
st.markdown("Upload your cleaned dataset to generate insights and suggestions.")
|
45 |
+
|
46 |
+
# File upload
|
47 |
+
uploaded_file = st.file_uploader("Upload CSV File", type="csv")
|
48 |
+
|
49 |
+
if uploaded_file is not None:
|
50 |
+
df = load_data(uploaded_file)
|
51 |
+
|
52 |
+
if df is not None:
|
53 |
+
st.markdown("### Dataset Preview")
|
54 |
+
st.dataframe(df.head())
|
55 |
+
|
56 |
+
st.markdown("### Dataset Summary")
|
57 |
+
summary = generate_summary(df)
|
58 |
+
st.dataframe(summary)
|
59 |
+
|
60 |
+
st.markdown("### Insights and Suggestions")
|
61 |
+
insights = generate_insights(df)
|
62 |
+
for insight in insights:
|
63 |
+
st.write(f"- {insight}")
|
64 |
+
else:
|
65 |
+
st.info("Please upload a CSV file.")
|