# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python) # OpenAI Chat completion import openai #importing openai for API usage import chainlit as cl #importing chainlit for our app from chainlit.input_widget import Select, Switch, Slider #importing chainlit settings selection tools from chainlit.prompt import Prompt, PromptMessage #importing prompt tools from chainlit.playground.providers import ChatOpenAI #importing ChatOpenAI tools # You only need the api key inserted here if it's not in your .env file #openai.api_key = "YOUR_API_KEY" # ChatOpenAI Templates system_template = """ You are a helpful assistant who always speaks in a pleasant tone! """ user_template = """ {input} Think through your response step by step. """ @cl.on_chat_start # marks a function that will be executed at the start of a user session async def start_chat(): # allows users to dynamically select their settings for generation settings = await cl.ChatSettings( [ Select( id="Model", label="OpenAI - Model", values=["gpt-3.5-turbo", "gpt-3.5-turbo-16k"], initial_index=0, ), Switch(id="Streaming", label="OpenAI - Stream Tokens", initial=True), Slider( id="Temperature", label="OpenAI - Temperature", initial=1, min=0, max=2, step=0.1, ), Slider( id="Max Tokens", label="OpenAI - Max Tokens", initial=250, min=100, max=500, step=10 ) ] ).send() @cl.on_settings_update # marks a function that "logs" settings update async def setup_agent(settings): print("on_settings_update", settings) @cl.on_message # marks a function that should be run each time the chatbot receives a message from a user async def main(message: str): prompt = Prompt( provider=ChatOpenAI.id, messages=[ PromptMessage( role="system", template=system_template, ), PromptMessage( role="user", template=user_template, formatted=template.format(input=message) ) ], inputs = {"input" : message} ) msg = cl.Message(content="") # Call OpenAI async for stream_resp in await openai.ChatCompletion.acreate( messages=[m.to_openai() for m in prompt.messages], stream=True, **settings ): token = stream_resp.choices[0]["delta"].get("content", "") await msg.stream_token(token) # Update the prompt object with the completion prompt.completion = msg.content msg.prompt = prompt # Send and close the message stream await msg.send()