Benjy's picture
Add Streamlit app for object detection
4c71f02
raw
history blame
1.41 kB
import streamlit as st
import cv2
from ultralytics import YOLO
from PIL import Image
import numpy as np
# Load the YOLOv8 model
model = YOLO('yolov8n.pt')
# Streamlit app
def main():
st.title("Object Detection - General")
# Upload image
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Read the uploaded image
image = Image.open(uploaded_file)
image_array = np.array(image)
# Perform object detection
results = model.predict(image_array)
# Display the detected objects
for result in results:
boxes = result.boxes
for box in boxes:
x1, y1, x2, y2 = box.xyxy[0]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
cv2.rectangle(image_array, (x1, y1), (x2, y2), (0, 255, 0), 2)
conf = box.conf[0]
cls = int(box.cls[0])
label = f"{model.names[cls]} ({conf:.2f})"
cv2.putText(image_array, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
# Convert the image array back to PIL Image
image = Image.fromarray(image_array)
# Display the image with detected objects
st.image(image, caption='Detected Objects')
if __name__ == "__main__":
main()