File size: 1,154 Bytes
e8a2d7c
c644909
3db21cd
 
78f153b
3db21cd
 
 
e8a2d7c
 
c644909
 
3db21cd
8a0b589
3db21cd
 
 
 
 
 
 
 
 
 
e8a2d7c
 
 
 
6c5550d
e8a2d7c
6c5550d
bf8b184
e8a2d7c
 
e374794
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import gradio as gr
import re
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Modell und Tokenizer laden
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")

def text_to_emoji(text):
    # remove special characters
    text_cleaned = re.sub(r"[.,!?;:]", "", text)
    prompt = f"Convert the following sentence into an emoji-sequence which conveys a similar meaning and return only the emojis, no explanation:\n\n\"{text_cleaned}\""

    # Tokenisieren
    inputs = tokenizer(prompt, return_tensors="pt")
    
    # Antwort generieren
    outputs = model.generate(**inputs, max_new_tokens=25, do_sample=True, temperature=0.7)
    
    # Antwort decodieren
    result = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    return result

# Gradio UI
iface = gr.Interface(
    fn=text_to_emoji,
    inputs=gr.Textbox(lines=2, placeholder="Enter a sentence..."),
    outputs="text",
    title="AI-Powered Emoji Translator",
    description="Enter a sentence, and the AI will transform it into an emoji-version 🥳"
)

iface.launch()